File size: 3,575 Bytes
c2ca15f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 |
model = dict(
type='MultiViewDfM',
data_preprocessor=dict(
type='Det3DDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
pad_size_divisor=32),
backbone=dict(
type='mmdet.ResNet',
depth=101,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=1,
norm_cfg=dict(type='BN', requires_grad=False),
norm_eval=True,
style='pytorch',
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101'),
dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
stage_with_dcn=(False, False, True, True)),
neck=dict(
type='mmdet.FPN',
in_channels=[256, 512, 1024, 2048],
out_channels=64,
num_outs=4),
neck_2d=None,
bbox_head_2d=None,
backbone_stereo=None,
depth_head=None,
backbone_3d=None,
neck_3d=dict(type='OutdoorImVoxelNeck', in_channels=64, out_channels=256),
valid_sample=True,
voxel_size=(0.5, 0.5, 0.5), # n_voxels=[240, 300, 12]
anchor_generator=dict(
type='AlignedAnchor3DRangeGenerator',
ranges=[[-35.0, -75.0, -2, 75.0, 75.0, 4]],
rotations=[.0]),
bbox_head_3d=dict(
type='Anchor3DHead',
num_classes=3,
in_channels=256,
feat_channels=256,
use_direction_classifier=True,
anchor_generator=dict(
type='AlignedAnchor3DRangeGenerator',
ranges=[[-35.0, -75.0, 0, 75.0, 75.0, 0],
[-35.0, -75.0, -0.1188, 75.0, 75.0, -0.1188],
[-35.0, -75.0, -0.0345, 75.0, 75.0, -0.0345]],
sizes=[
[0.91, 0.84, 1.74], # pedestrian
[1.81, 0.84, 1.77], # cyclist
[4.73, 2.08, 1.77], # car
],
rotations=[0, 1.57],
reshape_out=False),
diff_rad_by_sin=True,
dir_offset=-0.7854, # -pi / 4
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'),
loss_cls=dict(
type='mmdet.FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(
type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0),
loss_dir=dict(
type='mmdet.CrossEntropyLoss', use_sigmoid=False,
loss_weight=0.2)),
train_cfg=dict(
assigner=[
dict( # for Pedestrian
type='Max3DIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.35,
min_pos_iou=0.35,
ignore_iof_thr=-1),
dict( # for Cyclist
type='Max3DIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.35,
min_pos_iou=0.35,
ignore_iof_thr=-1),
dict( # for Car
type='Max3DIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.6,
neg_iou_thr=0.45,
min_pos_iou=0.45,
ignore_iof_thr=-1)
],
allowed_border=0,
pos_weight=-1,
debug=False),
test_cfg=dict(
use_rotate_nms=True,
nms_across_levels=False,
nms_thr=0.05,
score_thr=0.001,
min_bbox_size=0,
nms_pre=4096,
max_num=500))
|