File size: 2,613 Bytes
c2ca15f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
_base_ = [
'../_base_/models/fcaf3d.py', '../_base_/default_runtime.py',
'../_base_/datasets/sunrgbd-3d.py'
]
n_points = 100000
backend_args = None
model = dict(
bbox_head=dict(
num_classes=10,
num_reg_outs=8,
bbox_loss=dict(type='RotatedIoU3DLoss')))
train_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='DEPTH',
shift_height=False,
load_dim=6,
use_dim=[0, 1, 2, 3, 4, 5],
backend_args=backend_args),
dict(type='LoadAnnotations3D'),
dict(type='PointSample', num_points=n_points),
dict(type='RandomFlip3D', sync_2d=False, flip_ratio_bev_horizontal=0.5),
dict(
type='GlobalRotScaleTrans',
rot_range=[-0.523599, 0.523599],
scale_ratio_range=[0.85, 1.15],
translation_std=[.1, .1, .1],
shift_height=False),
dict(
type='Pack3DDetInputs',
keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='DEPTH',
shift_height=False,
load_dim=6,
use_dim=[0, 1, 2, 3, 4, 5],
backend_args=backend_args),
dict(
type='MultiScaleFlipAug3D',
img_scale=(1333, 800),
pts_scale_ratio=1,
flip=False,
transforms=[
dict(
type='GlobalRotScaleTrans',
rot_range=[0, 0],
scale_ratio_range=[1., 1.],
translation_std=[0, 0, 0]),
dict(
type='RandomFlip3D',
sync_2d=False,
flip_ratio_bev_horizontal=0.5,
flip_ratio_bev_vertical=0.5),
dict(type='PointSample', num_points=n_points)
]),
dict(type='Pack3DDetInputs', keys=['points'])
]
train_dataloader = dict(
batch_size=8,
dataset=dict(
type='RepeatDataset',
times=3,
dataset=dict(pipeline=train_pipeline, filter_empty_gt=True)))
val_dataloader = dict(dataset=dict(pipeline=test_pipeline))
test_dataloader = val_dataloader
optim_wrapper = dict(
type='OptimWrapper',
optimizer=dict(type='AdamW', lr=0.001, weight_decay=0.0001),
clip_grad=dict(max_norm=10, norm_type=2))
# learning rate
param_scheduler = dict(
type='MultiStepLR',
begin=0,
end=12,
by_epoch=True,
milestones=[8, 11],
gamma=0.1)
custom_hooks = [dict(type='EmptyCacheHook', after_iter=True)]
# training schedule for 1x
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=12)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')
|