File size: 1,602 Bytes
c2ca15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
_base_ = [
    '../_base_/models/mask-rcnn_r50_fpn.py',
    '../_base_/datasets/nuim-instance.py',
    '../_base_/schedules/mmdet-schedule-1x.py', '../_base_/default_runtime.py'
]
model = dict(
    pretrained='open-mmlab://detectron2/resnet50_caffe',
    backbone=dict(norm_cfg=dict(requires_grad=False), style='caffe'),
    roi_head=dict(
        bbox_head=dict(num_classes=10), mask_head=dict(num_classes=10)))
backend_args = None
train_pipeline = [
    dict(type='LoadImageFromFile', backend_args=backend_args),
    dict(type='LoadAnnotations', with_bbox=True, with_mask=True),
    dict(
        type='Resize',
        img_scale=[(1280, 720), (1920, 1080)],
        multiscale_mode='range',
        keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='PackDetInputs'),
]
test_pipeline = [
    dict(type='LoadImageFromFile', backend_args=backend_args),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(1600, 900),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
        ]),
    dict(
        type='PackDetInputs',
        meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
                   'scale_factor')),
]
data = dict(
    train=dict(pipeline=train_pipeline),
    val=dict(pipeline=test_pipeline),
    test=dict(pipeline=test_pipeline))

load_from = 'https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth'  # noqa