File size: 6,530 Bytes
c2ca15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional, Tuple, Union

from mmcv.cnn import build_activation_layer, build_conv_layer, build_norm_layer
from mmengine.model import BaseModule
from mmengine.registry import MODELS
from torch import nn

from mmdet3d.utils import ConfigType, OptConfigType, OptMultiConfig

try:
    from MinkowskiEngine import (MinkowskiBatchNorm, MinkowskiConvolution,
                                 MinkowskiConvolutionTranspose, MinkowskiReLU,
                                 MinkowskiSyncBatchNorm, SparseTensor)
    from MinkowskiEngine.modules.resnet_block import BasicBlock, Bottleneck
except ImportError:
    SparseTensor = None
    from mmcv.cnn.resnet import BasicBlock, Bottleneck
    IS_MINKOWSKI_ENGINE_AVAILABLE = False
else:
    MODELS._register_module(MinkowskiConvolution, 'MinkowskiConvNd')
    MODELS._register_module(MinkowskiConvolutionTranspose,
                            'MinkowskiConvNdTranspose')
    MODELS._register_module(MinkowskiBatchNorm, 'MinkowskiBN')
    MODELS._register_module(MinkowskiSyncBatchNorm, 'MinkowskiSyncBN')
    MODELS._register_module(MinkowskiReLU, 'MinkowskiReLU')
    IS_MINKOWSKI_ENGINE_AVAILABLE = True


class MinkowskiConvModule(BaseModule):
    """A minkowski engine conv block that bundles conv/norm/activation layers.

    Args:
        in_channels (int): In channels of block.
        out_channels (int): Out channels of block.
        kernel_size (int or Tuple[int]): Kernel_size of block.
        stride (int or Tuple[int]): Stride of the first block. Defaults to 1.
        dilation (int): Dilation of block. Defaults to 1.
        bias (bool): Whether to use bias in conv. Defaults to False.
        conv_cfg (:obj:`ConfigDict` or dict, optional): Config of conv layer.
            Defaults to None.
        norm_cfg (:obj:`ConfigDict` or dict): The config of normalization.
            Defaults to dict(type='MinkowskiBN').
        act_cfg (:obj:`ConfigDict` or dict): The config of activation.
            Defaults to dict(type='MinkowskiReLU', inplace=True).
        init_cfg (:obj:`ConfigDict` or dict, optional): Initialization config.
            Defaults to None.
    """

    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 kernel_size: Union[int, Tuple[int, int, int]],
                 stride: Union[int, Tuple[int, int, int]] = 1,
                 dilation: int = 1,
                 bias: bool = False,
                 conv_cfg: OptConfigType = None,
                 norm_cfg: ConfigType = dict(type='MinkowskiBN'),
                 act_cfg: ConfigType = dict(
                     type='MinkowskiReLU', inplace=True),
                 init_cfg: OptMultiConfig = None,
                 **kwargs) -> None:
        super().__init__(init_cfg)
        layers = []
        if conv_cfg is None:
            conv_cfg = dict(type='MinkowskiConvNd')
        conv = build_conv_layer(
            conv_cfg,
            in_channels,
            out_channels,
            kernel_size,
            stride,
            dilation,
            bias,
            dimension=3)
        layers.append(conv)

        if norm_cfg is not None:
            _, norm = build_norm_layer(norm_cfg, out_channels)
            layers.append(norm)
        if act_cfg is not None:
            activation = build_activation_layer(act_cfg)
            layers.append(activation)
        self.net = nn.Sequential(*layers)

    def forward(self, x: SparseTensor) -> SparseTensor:
        out = self.net(x)
        return out


class MinkowskiBasicBlock(BasicBlock, BaseModule):
    """A wrapper of minkowski engine basic block. It inherits from mmengine's
    `BaseModule` and allows additional keyword arguments.

    Args:
        inplanes (int): In channels of block.
        planes (int): Out channels of block.
        stride (int or Tuple[int]): Stride of the first conv. Defaults to 1.
        dilation (int): Dilation of block. Defaults to 1.
        downsample (nn.Module, optional): Residual branch conv module if
            necessary. Defaults to None.
        bn_momentum (float): Momentum of batch norm layer. Defaults to 0.1.
        dimension (int): Dimension of minkowski convolution. Defaults to 3.
        init_cfg (:obj:`ConfigDict` or dict, optional): Initialization config.
            Defaults to None.
    """

    def __init__(self,
                 inplanes: int,
                 planes: int,
                 stride: int = 1,
                 dilation: int = 1,
                 downsample: Optional[nn.Module] = None,
                 bn_momentum: float = 0.1,
                 dimension: int = 3,
                 init_cfg: OptConfigType = None,
                 **kwargs):
        BaseModule.__init__(self, init_cfg)
        BasicBlock.__init__(
            self,
            inplanes,
            planes,
            stride=stride,
            dilation=dilation,
            downsample=downsample,
            bn_momentum=bn_momentum,
            dimension=dimension)


class MinkowskiBottleneck(Bottleneck, BaseModule):
    """A wrapper of minkowski engine bottleneck block. It inherits from
    mmengine's `BaseModule` and allows additional keyword arguments.

    Args:
        inplanes (int): In channels of block.
        planes (int): Out channels of block.
        stride (int or Tuple[int]): Stride of the second conv. Defaults to 1.
        dilation (int): Dilation of block. Defaults to 1.
        downsample (nn.Module, optional): Residual branch conv module if
            necessary. Defaults to None.
        bn_momentum (float): Momentum of batch norm layer. Defaults to 0.1.
        dimension (int): Dimension of minkowski convolution. Defaults to 3.
        init_cfg (:obj:`ConfigDict` or dict, optional): Initialization config.
            Defaults to None.
    """

    def __init__(self,
                 inplanes: int,
                 planes: int,
                 stride: int = 1,
                 dilation: int = 1,
                 downsample: Optional[nn.Module] = None,
                 bn_momentum: float = 0.1,
                 dimension: int = 3,
                 init_cfg: OptConfigType = None,
                 **kwargs):
        BaseModule.__init__(self, init_cfg)
        Bottleneck.__init__(
            self,
            inplanes,
            planes,
            stride=stride,
            dilation=dilation,
            downsample=downsample,
            bn_momentum=bn_momentum,
            dimension=dimension)