File size: 6,976 Bytes
c2ca15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional

import torch
from mmdet.models.losses.utils import weighted_loss
from torch import Tensor
from torch import nn as nn

from mmdet3d.registry import MODELS


@weighted_loss
def uncertain_smooth_l1_loss(pred: Tensor,
                             target: Tensor,
                             sigma: Tensor,
                             alpha: float = 1.0,
                             beta: float = 1.0) -> Tensor:
    """Smooth L1 loss with uncertainty.

    Args:
        pred (Tensor): The prediction.
        target (Tensor): The learning target of the prediction.
        sigma (Tensor): The sigma for uncertainty.
        alpha (float): The coefficient of log(sigma).
            Defaults to 1.0.
        beta (float): The threshold in the piecewise function.
            Defaults to 1.0.

    Returns:
        Tensor: Calculated loss
    """
    assert beta > 0
    assert target.numel() > 0
    assert pred.size() == target.size() == sigma.size(), 'The size of pred ' \
        f'{pred.size()}, target {target.size()}, and sigma {sigma.size()} ' \
        'are inconsistent.'
    diff = torch.abs(pred - target)
    loss = torch.where(diff < beta, 0.5 * diff * diff / beta,
                       diff - 0.5 * beta)
    loss = torch.exp(-sigma) * loss + alpha * sigma

    return loss


@weighted_loss
def uncertain_l1_loss(pred: Tensor,
                      target: Tensor,
                      sigma: Tensor,
                      alpha: float = 1.0) -> Tensor:
    """L1 loss with uncertainty.

    Args:
        pred (Tensor): The prediction.
        target (Tensor): The learning target of the prediction.
        sigma (Tensor): The sigma for uncertainty.
        alpha (float): The coefficient of log(sigma).
            Defaults to 1.0.

    Returns:
        Tensor: Calculated loss
    """
    assert target.numel() > 0
    assert pred.size() == target.size() == sigma.size(), 'The size of pred ' \
        f'{pred.size()}, target {target.size()}, and sigma {sigma.size()} ' \
        'are inconsistent.'
    loss = torch.abs(pred - target)
    loss = torch.exp(-sigma) * loss + alpha * sigma
    return loss


@MODELS.register_module()
class UncertainSmoothL1Loss(nn.Module):
    r"""Smooth L1 loss with uncertainty.

    Please refer to `PGD <https://arxiv.org/abs/2107.14160>`_ and
    `Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry
    and Semantics <https://arxiv.org/abs/1705.07115>`_ for more details.

    Args:
        alpha (float): The coefficient of log(sigma).
            Defaults to 1.0.
        beta (float): The threshold in the piecewise function.
            Defaults to 1.0.
        reduction (str): The method to reduce the loss.
            Options are 'none', 'mean' and 'sum'. Defaults to 'mean'.
        loss_weight (float): The weight of loss. Defaults to 1.0
    """

    def __init__(self,
                 alpha: float = 1.0,
                 beta: float = 1.0,
                 reduction: str = 'mean',
                 loss_weight: float = 1.0) -> None:
        super(UncertainSmoothL1Loss, self).__init__()
        assert reduction in ['none', 'sum', 'mean']
        self.alpha = alpha
        self.beta = beta
        self.reduction = reduction
        self.loss_weight = loss_weight

    def forward(self,
                pred: Tensor,
                target: Tensor,
                sigma: Tensor,
                weight: Optional[Tensor] = None,
                avg_factor: Optional[float] = None,
                reduction_override: Optional[str] = None,
                **kwargs) -> Tensor:
        """Forward function.

        Args:
            pred (Tensor): The prediction.
            target (Tensor): The learning target of the prediction.
            sigma (Tensor): The sigma for uncertainty.
            weight (Tensor, optional): The weight of loss for each
                prediction. Defaults to None.
            avg_factor (float, optional): Average factor that is used to
                average the loss. Defaults to None.
            reduction_override (str, optional): The reduction method used to
                override the original reduction method of the loss.
                Defaults to None.

        Returns:
            Tensor: Calculated loss
        """
        assert reduction_override in (None, 'none', 'mean', 'sum')
        reduction = (
            reduction_override if reduction_override else self.reduction)
        loss_bbox = self.loss_weight * uncertain_smooth_l1_loss(
            pred,
            target,
            weight,
            sigma=sigma,
            alpha=self.alpha,
            beta=self.beta,
            reduction=reduction,
            avg_factor=avg_factor,
            **kwargs)
        return loss_bbox


@MODELS.register_module()
class UncertainL1Loss(nn.Module):
    """L1 loss with uncertainty.

    Args:
        alpha (float): The coefficient of log(sigma).
            Defaults to 1.0.
        reduction (str): The method to reduce the loss.
            Options are 'none', 'mean' and 'sum'. Defaults to 'mean'.
        loss_weight (float): The weight of loss. Defaults to 1.0.
    """

    def __init__(self,
                 alpha: float = 1.0,
                 reduction: str = 'mean',
                 loss_weight: float = 1.0) -> None:
        super(UncertainL1Loss, self).__init__()
        assert reduction in ['none', 'sum', 'mean']
        self.alpha = alpha
        self.reduction = reduction
        self.loss_weight = loss_weight

    def forward(self,
                pred: Tensor,
                target: Tensor,
                sigma: Tensor,
                weight: Optional[Tensor] = None,
                avg_factor: Optional[float] = None,
                reduction_override: Optional[str] = None) -> Tensor:
        """Forward function.

        Args:
            pred (Tensor): The prediction.
            target (Tensor): The learning target of the prediction.
            sigma (Tensor): The sigma for uncertainty.
            weight (Tensor, optional): The weight of loss for each
                prediction. Defaults to None.
            avg_factor (float, optional): Average factor that is used to
                average the loss. Defaults to None.
            reduction_override (str, optional): The reduction method used to
                override the original reduction method of the loss.
                Defaults to None.

        Returns:
            Tensor: Calculated loss
        """
        assert reduction_override in (None, 'none', 'mean', 'sum')
        reduction = (
            reduction_override if reduction_override else self.reduction)
        loss_bbox = self.loss_weight * uncertain_l1_loss(
            pred,
            target,
            weight,
            sigma=sigma,
            alpha=self.alpha,
            reduction=reduction,
            avg_factor=avg_factor)
        return loss_bbox