File size: 23,331 Bytes
c2ca15f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 |
# Copyright (c) OpenMMLab. All rights reserved.
from typing import Dict, List, Tuple
import numpy as np
import torch
from torch import Tensor
from torch import nn as nn
from mmdet3d.registry import MODELS
from mmdet3d.utils import ConfigType, OptConfigType, OptMultiConfig
from ...structures.det3d_data_sample import OptSampleList, SampleList
from ..utils import add_prefix
from .base import Base3DSegmentor
@MODELS.register_module()
class EncoderDecoder3D(Base3DSegmentor):
"""3D Encoder Decoder segmentors.
EncoderDecoder typically consists of backbone, decode_head, auxiliary_head.
Note that auxiliary_head is only used for deep supervision during training,
which could be dumped during inference.
1. The ``loss`` method is used to calculate the loss of model,
which includes two steps: (1) Extracts features to obtain the feature maps
(2) Call the decode head loss function to forward decode head model and
calculate losses.
.. code:: text
loss(): extract_feat() -> _decode_head_forward_train() -> _auxiliary_head_forward_train (optional)
_decode_head_forward_train(): decode_head.loss()
_auxiliary_head_forward_train(): auxiliary_head.loss (optional)
2. The ``predict`` method is used to predict segmentation results,
which includes two steps: (1) Run inference function to obtain the list of
seg_logits (2) Call post-processing function to obtain list of
``Det3DDataSample`` including ``pred_pts_seg``.
.. code:: text
predict(): inference() -> postprocess_result()
inference(): whole_inference()/slide_inference()
whole_inference()/slide_inference(): encoder_decoder()
encoder_decoder(): extract_feat() -> decode_head.predict()
4 The ``_forward`` method is used to output the tensor by running the model,
which includes two steps: (1) Extracts features to obtain the feature maps
(2) Call the decode head forward function to forward decode head model.
.. code:: text
_forward(): extract_feat() -> _decode_head.forward()
Args:
backbone (dict or :obj:`ConfigDict`): The config for the backnone of
segmentor.
decode_head (dict or :obj:`ConfigDict`): The config for the decode
head of segmentor.
neck (dict or :obj:`ConfigDict`, optional): The config for the neck of
segmentor. Defaults to None.
auxiliary_head (dict or :obj:`ConfigDict` or List[dict or
:obj:`ConfigDict`], optional): The config for the auxiliary head of
segmentor. Defaults to None.
loss_regularization (dict or :obj:`ConfigDict` or List[dict or
:obj:`ConfigDict`], optional): The config for the regularization
loass. Defaults to None.
train_cfg (dict or :obj:`ConfigDict`, optional): The config for
training. Defaults to None.
test_cfg (dict or :obj:`ConfigDict`, optional): The config for testing.
Defaults to None.
data_preprocessor (dict or :obj:`ConfigDict`, optional): The
pre-process config of :class:`BaseDataPreprocessor`.
Defaults to None.
init_cfg (dict or :obj:`ConfigDict` or List[dict or :obj:`ConfigDict`],
optional): The weight initialized config for :class:`BaseModule`.
Defaults to None.
""" # noqa: E501
def __init__(self,
backbone: ConfigType,
decode_head: ConfigType,
neck: OptConfigType = None,
auxiliary_head: OptMultiConfig = None,
loss_regularization: OptMultiConfig = None,
train_cfg: OptConfigType = None,
test_cfg: OptConfigType = None,
data_preprocessor: OptConfigType = None,
init_cfg: OptMultiConfig = None) -> None:
super(EncoderDecoder3D, self).__init__(
data_preprocessor=data_preprocessor, init_cfg=init_cfg)
self.backbone = MODELS.build(backbone)
if neck is not None:
self.neck = MODELS.build(neck)
self._init_decode_head(decode_head)
self._init_auxiliary_head(auxiliary_head)
self._init_loss_regularization(loss_regularization)
self.train_cfg = train_cfg
self.test_cfg = test_cfg
assert self.with_decode_head, \
'3D EncoderDecoder Segmentor should have a decode_head'
def _init_decode_head(self, decode_head: ConfigType) -> None:
"""Initialize ``decode_head``."""
self.decode_head = MODELS.build(decode_head)
self.num_classes = self.decode_head.num_classes
def _init_auxiliary_head(self,
auxiliary_head: OptMultiConfig = None) -> None:
"""Initialize ``auxiliary_head``."""
if auxiliary_head is not None:
if isinstance(auxiliary_head, list):
self.auxiliary_head = nn.ModuleList()
for head_cfg in auxiliary_head:
self.auxiliary_head.append(MODELS.build(head_cfg))
else:
self.auxiliary_head = MODELS.build(auxiliary_head)
def _init_loss_regularization(self,
loss_regularization: OptMultiConfig = None
) -> None:
"""Initialize ``loss_regularization``."""
if loss_regularization is not None:
if isinstance(loss_regularization, list):
self.loss_regularization = nn.ModuleList()
for loss_cfg in loss_regularization:
self.loss_regularization.append(MODELS.build(loss_cfg))
else:
self.loss_regularization = MODELS.build(loss_regularization)
def extract_feat(self, batch_inputs: Tensor) -> dict:
"""Extract features from points."""
x = self.backbone(batch_inputs)
if self.with_neck:
x = self.neck(x)
return x
def encode_decode(self, batch_inputs: Tensor,
batch_input_metas: List[dict]) -> Tensor:
"""Encode points with backbone and decode into a semantic segmentation
map of the same size as input.
Args:
batch_input (Tensor): Input point cloud sample
batch_input_metas (List[dict]): Meta information of a batch of
samples.
Returns:
Tensor: Segmentation logits of shape [B, num_classes, N].
"""
x = self.extract_feat(batch_inputs)
seg_logits = self.decode_head.predict(x, batch_input_metas,
self.test_cfg)
return seg_logits
def _decode_head_forward_train(
self, batch_inputs_dict: dict,
batch_data_samples: SampleList) -> Dict[str, Tensor]:
"""Run forward function and calculate loss for decode head in training.
Args:
batch_input (Tensor): Input point cloud sample
batch_data_samples (List[:obj:`Det3DDataSample`]): The det3d data
samples. It usually includes information such as `metainfo` and
`gt_pts_seg`.
Returns:
Dict[str, Tensor]: A dictionary of loss components for decode head.
"""
losses = dict()
loss_decode = self.decode_head.loss(batch_inputs_dict,
batch_data_samples, self.train_cfg)
losses.update(add_prefix(loss_decode, 'decode'))
return losses
def _auxiliary_head_forward_train(
self,
batch_inputs_dict: dict,
batch_data_samples: SampleList,
) -> Dict[str, Tensor]:
"""Run forward function and calculate loss for auxiliary head in
training.
Args:
batch_input (Tensor): Input point cloud sample
batch_data_samples (List[:obj:`Det3DDataSample`]): The det3d data
samples. It usually includes information such as `metainfo` and
`gt_pts_seg`.
Returns:
Dict[str, Tensor]: A dictionary of loss components for auxiliary
head.
"""
losses = dict()
if isinstance(self.auxiliary_head, nn.ModuleList):
for idx, aux_head in enumerate(self.auxiliary_head):
loss_aux = aux_head.loss(batch_inputs_dict, batch_data_samples,
self.train_cfg)
losses.update(add_prefix(loss_aux, f'aux_{idx}'))
else:
loss_aux = self.auxiliary_head.loss(batch_inputs_dict,
batch_data_samples,
self.train_cfg)
losses.update(add_prefix(loss_aux, 'aux'))
return losses
def _loss_regularization_forward_train(self) -> Dict[str, Tensor]:
"""Calculate regularization loss for model weight in training."""
losses = dict()
if isinstance(self.loss_regularization, nn.ModuleList):
for idx, regularize_loss in enumerate(self.loss_regularization):
loss_regularize = dict(
loss_regularize=regularize_loss(self.modules()))
losses.update(add_prefix(loss_regularize, f'regularize_{idx}'))
else:
loss_regularize = dict(
loss_regularize=self.loss_regularization(self.modules()))
losses.update(add_prefix(loss_regularize, 'regularize'))
return losses
def loss(self, batch_inputs_dict: dict,
batch_data_samples: SampleList) -> Dict[str, Tensor]:
"""Calculate losses from a batch of inputs and data samples.
Args:
batch_inputs_dict (dict): Input sample dict which
includes 'points' and 'imgs' keys.
- points (List[Tensor]): Point cloud of each sample.
- imgs (Tensor, optional): Image tensor has shape (B, C, H, W).
batch_data_samples (List[:obj:`Det3DDataSample`]): The det3d data
samples. It usually includes information such as `metainfo` and
`gt_pts_seg`.
Returns:
Dict[str, Tensor]: A dictionary of loss components.
"""
# extract features using backbone
points = torch.stack(batch_inputs_dict['points'])
x = self.extract_feat(points)
losses = dict()
loss_decode = self._decode_head_forward_train(x, batch_data_samples)
losses.update(loss_decode)
if self.with_auxiliary_head:
loss_aux = self._auxiliary_head_forward_train(
x, batch_data_samples)
losses.update(loss_aux)
if self.with_regularization_loss:
loss_regularize = self._loss_regularization_forward_train()
losses.update(loss_regularize)
return losses
@staticmethod
def _input_generation(coords,
patch_center: Tensor,
coord_max: Tensor,
feats: Tensor,
use_normalized_coord: bool = False) -> Tensor:
"""Generating model input.
Generate input by subtracting patch center and adding additional
features. Currently support colors and normalized xyz as features.
Args:
coords (Tensor): Sampled 3D point coordinate of shape [S, 3].
patch_center (Tensor): Center coordinate of the patch.
coord_max (Tensor): Max coordinate of all 3D points.
feats (Tensor): Features of sampled points of shape [S, C].
use_normalized_coord (bool): Whether to use normalized xyz as
additional features. Defaults to False.
Returns:
Tensor: The generated input data of shape [S, 3+C'].
"""
# subtract patch center, the z dimension is not centered
centered_coords = coords.clone()
centered_coords[:, 0] -= patch_center[0]
centered_coords[:, 1] -= patch_center[1]
# normalized coordinates as extra features
if use_normalized_coord:
normalized_coord = coords / coord_max
feats = torch.cat([feats, normalized_coord], dim=1)
points = torch.cat([centered_coords, feats], dim=1)
return points
def _sliding_patch_generation(self,
points: Tensor,
num_points: int,
block_size: float,
sample_rate: float = 0.5,
use_normalized_coord: bool = False,
eps: float = 1e-3) -> Tuple[Tensor, Tensor]:
"""Sampling points in a sliding window fashion.
First sample patches to cover all the input points.
Then sample points in each patch to batch points of a certain number.
Args:
points (Tensor): Input points of shape [N, 3+C].
num_points (int): Number of points to be sampled in each patch.
block_size (float): Size of a patch to sample.
sample_rate (float): Stride used in sliding patch. Defaults to 0.5.
use_normalized_coord (bool): Whether to use normalized xyz as
additional features. Defaults to False.
eps (float): A value added to patch boundary to guarantee points
coverage. Defaults to 1e-3.
Returns:
Tuple[Tensor, Tensor]:
- patch_points (Tensor): Points of different patches of shape
[K, N, 3+C].
- patch_idxs (Tensor): Index of each point in `patch_points` of
shape [K, N].
"""
device = points.device
# we assume the first three dims are points' 3D coordinates
# and the rest dims are their per-point features
coords = points[:, :3]
feats = points[:, 3:]
coord_max = coords.max(0)[0]
coord_min = coords.min(0)[0]
stride = block_size * sample_rate
num_grid_x = int(
torch.ceil((coord_max[0] - coord_min[0] - block_size) /
stride).item() + 1)
num_grid_y = int(
torch.ceil((coord_max[1] - coord_min[1] - block_size) /
stride).item() + 1)
patch_points, patch_idxs = [], []
for idx_y in range(num_grid_y):
s_y = coord_min[1] + idx_y * stride
e_y = torch.min(s_y + block_size, coord_max[1])
s_y = e_y - block_size
for idx_x in range(num_grid_x):
s_x = coord_min[0] + idx_x * stride
e_x = torch.min(s_x + block_size, coord_max[0])
s_x = e_x - block_size
# extract points within this patch
cur_min = torch.tensor([s_x, s_y, coord_min[2]]).to(device)
cur_max = torch.tensor([e_x, e_y, coord_max[2]]).to(device)
cur_choice = ((coords >= cur_min - eps) &
(coords <= cur_max + eps)).all(dim=1)
if not cur_choice.any(): # no points in this patch
continue
# sample points in this patch to multiple batches
cur_center = cur_min + block_size / 2.0
point_idxs = torch.nonzero(cur_choice, as_tuple=True)[0]
num_batch = int(np.ceil(point_idxs.shape[0] / num_points))
point_size = int(num_batch * num_points)
replace = point_size > 2 * point_idxs.shape[0]
num_repeat = point_size - point_idxs.shape[0]
if replace: # duplicate
point_idxs_repeat = point_idxs[torch.randint(
0, point_idxs.shape[0],
size=(num_repeat, )).to(device)]
else:
point_idxs_repeat = point_idxs[torch.randperm(
point_idxs.shape[0])[:num_repeat]]
choices = torch.cat([point_idxs, point_idxs_repeat], dim=0)
choices = choices[torch.randperm(choices.shape[0])]
# construct model input
point_batches = self._input_generation(
coords[choices],
cur_center,
coord_max,
feats[choices],
use_normalized_coord=use_normalized_coord)
patch_points.append(point_batches)
patch_idxs.append(choices)
patch_points = torch.cat(patch_points, dim=0)
patch_idxs = torch.cat(patch_idxs, dim=0)
# make sure all points are sampled at least once
assert torch.unique(patch_idxs).shape[0] == points.shape[0], \
'some points are not sampled in sliding inference'
return patch_points, patch_idxs
def slide_inference(self, point: Tensor, input_meta: dict,
rescale: bool) -> Tensor:
"""Inference by sliding-window with overlap.
Args:
point (Tensor): Input points of shape [N, 3+C].
input_meta (dict): Meta information of input sample.
rescale (bool): Whether transform to original number of points.
Will be used for voxelization based segmentors.
Returns:
Tensor: The output segmentation map of shape [num_classes, N].
"""
num_points = self.test_cfg.num_points
block_size = self.test_cfg.block_size
sample_rate = self.test_cfg.sample_rate
use_normalized_coord = self.test_cfg.use_normalized_coord
batch_size = self.test_cfg.batch_size * num_points
# patch_points is of shape [K*N, 3+C], patch_idxs is of shape [K*N]
patch_points, patch_idxs = self._sliding_patch_generation(
point, num_points, block_size, sample_rate, use_normalized_coord)
feats_dim = patch_points.shape[1]
seg_logits = [] # save patch predictions
for batch_idx in range(0, patch_points.shape[0], batch_size):
batch_points = patch_points[batch_idx:batch_idx + batch_size]
batch_points = batch_points.view(-1, num_points, feats_dim)
# batch_seg_logit is of shape [B, num_classes, N]
batch_seg_logit = self.encode_decode(batch_points,
[input_meta] * batch_size)
batch_seg_logit = batch_seg_logit.transpose(1, 2).contiguous()
seg_logits.append(batch_seg_logit.view(-1, self.num_classes))
# aggregate per-point logits by indexing sum and dividing count
seg_logits = torch.cat(seg_logits, dim=0) # [K*N, num_classes]
expand_patch_idxs = patch_idxs.unsqueeze(1).repeat(1, self.num_classes)
preds = point.new_zeros((point.shape[0], self.num_classes)).\
scatter_add_(dim=0, index=expand_patch_idxs, src=seg_logits)
count_mat = torch.bincount(patch_idxs)
preds = preds / count_mat[:, None]
# TODO: if rescale and voxelization segmentor
return preds.transpose(0, 1) # to [num_classes, K*N]
def whole_inference(self, points: Tensor, batch_input_metas: List[dict],
rescale: bool) -> Tensor:
"""Inference with full scene (one forward pass without sliding)."""
seg_logit = self.encode_decode(points, batch_input_metas)
# TODO: if rescale and voxelization segmentor
return seg_logit
def inference(self, points: Tensor, batch_input_metas: List[dict],
rescale: bool) -> Tensor:
"""Inference with slide/whole style.
Args:
points (Tensor): Input points of shape [B, N, 3+C].
batch_input_metas (List[dict]): Meta information of a batch of
samples.
rescale (bool): Whether transform to original number of points.
Will be used for voxelization based segmentors.
Returns:
Tensor: The output segmentation map.
"""
assert self.test_cfg.mode in ['slide', 'whole']
if self.test_cfg.mode == 'slide':
seg_logit = torch.stack([
self.slide_inference(point, input_meta, rescale)
for point, input_meta in zip(points, batch_input_metas)
], 0)
else:
seg_logit = self.whole_inference(points, batch_input_metas,
rescale)
return seg_logit
def predict(self,
batch_inputs_dict: dict,
batch_data_samples: SampleList,
rescale: bool = True) -> SampleList:
"""Simple test with single scene.
Args:
batch_inputs_dict (dict): Input sample dict which includes 'points'
and 'imgs' keys.
- points (List[Tensor]): Point cloud of each sample.
- imgs (Tensor, optional): Image tensor has shape (B, C, H, W).
batch_data_samples (List[:obj:`Det3DDataSample`]): The det3d data
samples. It usually includes information such as `metainfo` and
`gt_pts_seg`.
rescale (bool): Whether transform to original number of points.
Will be used for voxelization based segmentors.
Defaults to True.
Returns:
List[:obj:`Det3DDataSample`]: Segmentation results of the input
points. Each Det3DDataSample usually contains:
- ``pred_pts_seg`` (PointData): Prediction of 3D semantic
segmentation.
- ``pts_seg_logits`` (PointData): Predicted logits of 3D semantic
segmentation before normalization.
"""
# 3D segmentation requires per-point prediction, so it's impossible
# to use down-sampling to get a batch of scenes with same num_points
# therefore, we only support testing one scene every time
seg_logits_list = []
batch_input_metas = []
for data_sample in batch_data_samples:
batch_input_metas.append(data_sample.metainfo)
points = batch_inputs_dict['points']
for point, input_meta in zip(points, batch_input_metas):
seg_logits = self.inference(
point.unsqueeze(0), [input_meta], rescale)[0]
seg_logits_list.append(seg_logits)
return self.postprocess_result(seg_logits_list, batch_data_samples)
def _forward(self,
batch_inputs_dict: dict,
batch_data_samples: OptSampleList = None) -> Tensor:
"""Network forward process.
Args:
batch_inputs_dict (dict): Input sample dict which includes 'points'
and 'imgs' keys.
- points (List[Tensor]): Point cloud of each sample.
- imgs (Tensor, optional): Image tensor has shape (B, C, H, W).
batch_data_samples (List[:obj:`Det3DDataSample`]): The det3d data
samples. It usually includes information such as `metainfo` and
`gt_pts_seg`.
Returns:
Tensor: Forward output of model without any post-processes.
"""
points = torch.stack(batch_inputs_dict['points'])
x = self.extract_feat(points)
return self.decode_head.forward(x)
|