File size: 5,011 Bytes
c2ca15f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import pytest
import torch

from mmdet3d.registry import MODELS


def test_pointnet2_sa_msg():
    if not torch.cuda.is_available():
        pytest.skip()

    # PN2MSG used in 3DSSD
    cfg = dict(
        type='PointNet2SAMSG',
        in_channels=4,
        num_points=(256, 64, (32, 32)),
        radii=((0.2, 0.4, 0.8), (0.4, 0.8, 1.6), (1.6, 3.2, 4.8)),
        num_samples=((8, 8, 16), (8, 8, 16), (8, 8, 8)),
        sa_channels=(((8, 8, 16), (8, 8, 16),
                      (8, 8, 16)), ((16, 16, 32), (16, 16, 32), (16, 24, 32)),
                     ((32, 32, 64), (32, 24, 64), (32, 64, 64))),
        aggregation_channels=(16, 32, 64),
        fps_mods=(('D-FPS'), ('FS'), ('F-FPS', 'D-FPS')),
        fps_sample_range_lists=((-1), (-1), (64, -1)),
        norm_cfg=dict(type='BN2d'),
        sa_cfg=dict(
            type='PointSAModuleMSG',
            pool_mod='max',
            use_xyz=True,
            normalize_xyz=False))

    self = MODELS.build(cfg)
    self.cuda()
    assert self.SA_modules[0].mlps[0].layer0.conv.in_channels == 4
    assert self.SA_modules[0].mlps[0].layer0.conv.out_channels == 8
    assert self.SA_modules[0].mlps[1].layer1.conv.out_channels == 8
    assert self.SA_modules[2].mlps[2].layer2.conv.out_channels == 64

    xyz = np.fromfile('tests/data/sunrgbd/points/000001.bin', dtype=np.float32)
    xyz = torch.from_numpy(xyz).view(1, -1, 6).cuda()  # (B, N, 6)
    # test forward
    ret_dict = self(xyz[:, :, :4])
    sa_xyz = ret_dict['sa_xyz'][-1]
    sa_features = ret_dict['sa_features'][-1]
    sa_indices = ret_dict['sa_indices'][-1]

    assert sa_xyz.shape == torch.Size([1, 64, 3])
    assert sa_features.shape == torch.Size([1, 64, 64])
    assert sa_indices.shape == torch.Size([1, 64])

    # out_indices should smaller than the length of SA Modules.
    with pytest.raises(AssertionError):
        MODELS.build(
            dict(
                type='PointNet2SAMSG',
                in_channels=4,
                num_points=(256, 64, (32, 32)),
                radii=((0.2, 0.4, 0.8), (0.4, 0.8, 1.6), (1.6, 3.2, 4.8)),
                num_samples=((8, 8, 16), (8, 8, 16), (8, 8, 8)),
                sa_channels=(((8, 8, 16), (8, 8, 16), (8, 8, 16)),
                             ((16, 16, 32), (16, 16, 32), (16, 24, 32)),
                             ((32, 32, 64), (32, 24, 64), (32, 64, 64))),
                aggregation_channels=(16, 32, 64),
                fps_mods=(('D-FPS'), ('FS'), ('F-FPS', 'D-FPS')),
                fps_sample_range_lists=((-1), (-1), (64, -1)),
                out_indices=(2, 3),
                norm_cfg=dict(type='BN2d'),
                sa_cfg=dict(
                    type='PointSAModuleMSG',
                    pool_mod='max',
                    use_xyz=True,
                    normalize_xyz=False)))

    # PN2MSG used in segmentation
    cfg = dict(
        type='PointNet2SAMSG',
        in_channels=6,  # [xyz, rgb]
        num_points=(1024, 256, 64, 16),
        radii=((0.05, 0.1), (0.1, 0.2), (0.2, 0.4), (0.4, 0.8)),
        num_samples=((16, 32), (16, 32), (16, 32), (16, 32)),
        sa_channels=(((16, 16, 32), (32, 32, 64)), ((64, 64, 128), (64, 96,
                                                                    128)),
                     ((128, 196, 256), (128, 196, 256)), ((256, 256, 512),
                                                          (256, 384, 512))),
        aggregation_channels=(None, None, None, None),
        fps_mods=(('D-FPS'), ('D-FPS'), ('D-FPS'), ('D-FPS')),
        fps_sample_range_lists=((-1), (-1), (-1), (-1)),
        dilated_group=(False, False, False, False),
        out_indices=(0, 1, 2, 3),
        norm_cfg=dict(type='BN2d'),
        sa_cfg=dict(
            type='PointSAModuleMSG',
            pool_mod='max',
            use_xyz=True,
            normalize_xyz=False))

    self = MODELS.build(cfg)
    self.cuda()
    ret_dict = self(xyz)
    sa_xyz = ret_dict['sa_xyz']
    sa_features = ret_dict['sa_features']
    sa_indices = ret_dict['sa_indices']

    assert len(sa_xyz) == len(sa_features) == len(sa_indices) == 5
    assert sa_xyz[0].shape == torch.Size([1, 100, 3])
    assert sa_xyz[1].shape == torch.Size([1, 1024, 3])
    assert sa_xyz[2].shape == torch.Size([1, 256, 3])
    assert sa_xyz[3].shape == torch.Size([1, 64, 3])
    assert sa_xyz[4].shape == torch.Size([1, 16, 3])
    assert sa_features[0].shape == torch.Size([1, 3, 100])
    assert sa_features[1].shape == torch.Size([1, 96, 1024])
    assert sa_features[2].shape == torch.Size([1, 256, 256])
    assert sa_features[3].shape == torch.Size([1, 512, 64])
    assert sa_features[4].shape == torch.Size([1, 1024, 16])
    assert sa_indices[0].shape == torch.Size([1, 100])
    assert sa_indices[1].shape == torch.Size([1, 1024])
    assert sa_indices[2].shape == torch.Size([1, 256])
    assert sa_indices[3].shape == torch.Size([1, 64])
    assert sa_indices[4].shape == torch.Size([1, 16])