giantmonkeyTC
mm2
c2ca15f
raw
history blame
3.08 kB
model = dict(
type='SSD3DNet',
data_preprocessor=dict(type='Det3DDataPreprocessor'),
backbone=dict(
type='PointNet2SAMSG',
in_channels=4,
num_points=(4096, 512, (256, 256)),
radii=((0.2, 0.4, 0.8), (0.4, 0.8, 1.6), (1.6, 3.2, 4.8)),
num_samples=((32, 32, 64), (32, 32, 64), (32, 32, 32)),
sa_channels=(((16, 16, 32), (16, 16, 32), (32, 32, 64)),
((64, 64, 128), (64, 64, 128), (64, 96, 128)),
((128, 128, 256), (128, 192, 256), (128, 256, 256))),
aggregation_channels=(64, 128, 256),
fps_mods=(('D-FPS'), ('FS'), ('F-FPS', 'D-FPS')),
fps_sample_range_lists=((-1), (-1), (512, -1)),
norm_cfg=dict(type='BN2d', eps=1e-3, momentum=0.1),
sa_cfg=dict(
type='PointSAModuleMSG',
pool_mod='max',
use_xyz=True,
normalize_xyz=False)),
bbox_head=dict(
type='SSD3DHead',
vote_module_cfg=dict(
in_channels=256,
num_points=256,
gt_per_seed=1,
conv_channels=(128, ),
conv_cfg=dict(type='Conv1d'),
norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.1),
with_res_feat=False,
vote_xyz_range=(3.0, 3.0, 2.0)),
vote_aggregation_cfg=dict(
type='PointSAModuleMSG',
num_point=256,
radii=(4.8, 6.4),
sample_nums=(16, 32),
mlp_channels=((256, 256, 256, 512), (256, 256, 512, 1024)),
norm_cfg=dict(type='BN2d', eps=1e-3, momentum=0.1),
use_xyz=True,
normalize_xyz=False,
bias=True),
pred_layer_cfg=dict(
in_channels=1536,
shared_conv_channels=(512, 128),
cls_conv_channels=(128, ),
reg_conv_channels=(128, ),
conv_cfg=dict(type='Conv1d'),
norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.1),
bias=True),
objectness_loss=dict(
type='mmdet.CrossEntropyLoss',
use_sigmoid=True,
reduction='sum',
loss_weight=1.0),
center_loss=dict(
type='mmdet.SmoothL1Loss', reduction='sum', loss_weight=1.0),
dir_class_loss=dict(
type='mmdet.CrossEntropyLoss', reduction='sum', loss_weight=1.0),
dir_res_loss=dict(
type='mmdet.SmoothL1Loss', reduction='sum', loss_weight=1.0),
size_res_loss=dict(
type='mmdet.SmoothL1Loss', reduction='sum', loss_weight=1.0),
corner_loss=dict(
type='mmdet.SmoothL1Loss', reduction='sum', loss_weight=1.0),
vote_loss=dict(
type='mmdet.SmoothL1Loss', reduction='sum', loss_weight=1.0)),
# model training and testing settings
train_cfg=dict(
sample_mode='spec', pos_distance_thr=10.0, expand_dims_length=0.05),
test_cfg=dict(
nms_cfg=dict(type='nms', iou_thr=0.1),
sample_mode='spec',
score_thr=0.0,
per_class_proposal=True,
max_output_num=100))