|
model = dict( |
|
type='SSD3DNet', |
|
data_preprocessor=dict(type='Det3DDataPreprocessor'), |
|
backbone=dict( |
|
type='PointNet2SAMSG', |
|
in_channels=4, |
|
num_points=(4096, 512, (256, 256)), |
|
radii=((0.2, 0.4, 0.8), (0.4, 0.8, 1.6), (1.6, 3.2, 4.8)), |
|
num_samples=((32, 32, 64), (32, 32, 64), (32, 32, 32)), |
|
sa_channels=(((16, 16, 32), (16, 16, 32), (32, 32, 64)), |
|
((64, 64, 128), (64, 64, 128), (64, 96, 128)), |
|
((128, 128, 256), (128, 192, 256), (128, 256, 256))), |
|
aggregation_channels=(64, 128, 256), |
|
fps_mods=(('D-FPS'), ('FS'), ('F-FPS', 'D-FPS')), |
|
fps_sample_range_lists=((-1), (-1), (512, -1)), |
|
norm_cfg=dict(type='BN2d', eps=1e-3, momentum=0.1), |
|
sa_cfg=dict( |
|
type='PointSAModuleMSG', |
|
pool_mod='max', |
|
use_xyz=True, |
|
normalize_xyz=False)), |
|
bbox_head=dict( |
|
type='SSD3DHead', |
|
vote_module_cfg=dict( |
|
in_channels=256, |
|
num_points=256, |
|
gt_per_seed=1, |
|
conv_channels=(128, ), |
|
conv_cfg=dict(type='Conv1d'), |
|
norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.1), |
|
with_res_feat=False, |
|
vote_xyz_range=(3.0, 3.0, 2.0)), |
|
vote_aggregation_cfg=dict( |
|
type='PointSAModuleMSG', |
|
num_point=256, |
|
radii=(4.8, 6.4), |
|
sample_nums=(16, 32), |
|
mlp_channels=((256, 256, 256, 512), (256, 256, 512, 1024)), |
|
norm_cfg=dict(type='BN2d', eps=1e-3, momentum=0.1), |
|
use_xyz=True, |
|
normalize_xyz=False, |
|
bias=True), |
|
pred_layer_cfg=dict( |
|
in_channels=1536, |
|
shared_conv_channels=(512, 128), |
|
cls_conv_channels=(128, ), |
|
reg_conv_channels=(128, ), |
|
conv_cfg=dict(type='Conv1d'), |
|
norm_cfg=dict(type='BN1d', eps=1e-3, momentum=0.1), |
|
bias=True), |
|
objectness_loss=dict( |
|
type='mmdet.CrossEntropyLoss', |
|
use_sigmoid=True, |
|
reduction='sum', |
|
loss_weight=1.0), |
|
center_loss=dict( |
|
type='mmdet.SmoothL1Loss', reduction='sum', loss_weight=1.0), |
|
dir_class_loss=dict( |
|
type='mmdet.CrossEntropyLoss', reduction='sum', loss_weight=1.0), |
|
dir_res_loss=dict( |
|
type='mmdet.SmoothL1Loss', reduction='sum', loss_weight=1.0), |
|
size_res_loss=dict( |
|
type='mmdet.SmoothL1Loss', reduction='sum', loss_weight=1.0), |
|
corner_loss=dict( |
|
type='mmdet.SmoothL1Loss', reduction='sum', loss_weight=1.0), |
|
vote_loss=dict( |
|
type='mmdet.SmoothL1Loss', reduction='sum', loss_weight=1.0)), |
|
|
|
train_cfg=dict( |
|
sample_mode='spec', pos_distance_thr=10.0, expand_dims_length=0.05), |
|
test_cfg=dict( |
|
nms_cfg=dict(type='nms', iou_thr=0.1), |
|
sample_mode='spec', |
|
score_thr=0.0, |
|
per_class_proposal=True, |
|
max_output_num=100)) |
|
|