|
_base_ = [ |
|
'../_base_/datasets/kitti-mono3d.py', '../_base_/models/pgd.py', |
|
'../_base_/schedules/mmdet-schedule-1x.py', '../_base_/default_runtime.py' |
|
] |
|
|
|
model = dict( |
|
data_preprocessor=dict( |
|
type='Det3DDataPreprocessor', |
|
mean=[103.530, 116.280, 123.675], |
|
std=[1.0, 1.0, 1.0], |
|
bgr_to_rgb=False, |
|
pad_size_divisor=32), |
|
backbone=dict(frozen_stages=0), |
|
neck=dict(start_level=0, num_outs=4), |
|
bbox_head=dict( |
|
num_classes=3, |
|
bbox_code_size=7, |
|
pred_attrs=False, |
|
pred_velo=False, |
|
pred_bbox2d=True, |
|
use_onlyreg_proj=True, |
|
strides=(4, 8, 16, 32), |
|
regress_ranges=((-1, 64), (64, 128), (128, 256), (256, 1e8)), |
|
group_reg_dims=(2, 1, 3, 1, 16, |
|
4), |
|
reg_branch=( |
|
(256, ), |
|
(256, ), |
|
(256, ), |
|
(256, ), |
|
(256, ), |
|
(256, ) |
|
), |
|
centerness_branch=(256, ), |
|
loss_cls=dict( |
|
type='mmdet.FocalLoss', |
|
use_sigmoid=True, |
|
gamma=2.0, |
|
alpha=0.25, |
|
loss_weight=1.0), |
|
loss_bbox=dict( |
|
type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), |
|
loss_dir=dict( |
|
type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), |
|
loss_centerness=dict( |
|
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), |
|
use_depth_classifier=True, |
|
depth_branch=(256, ), |
|
depth_range=(0, 70), |
|
depth_unit=10, |
|
division='uniform', |
|
depth_bins=8, |
|
pred_keypoints=True, |
|
weight_dim=1, |
|
loss_depth=dict( |
|
type='UncertainSmoothL1Loss', alpha=1.0, beta=3.0, |
|
loss_weight=1.0), |
|
bbox_coder=dict( |
|
type='PGDBBoxCoder', |
|
base_depths=((28.01, 16.32), ), |
|
base_dims=((0.8, 1.73, 0.6), (1.76, 1.73, 0.6), (3.9, 1.56, 1.6)), |
|
code_size=7)), |
|
|
|
|
|
train_cfg=dict(code_weight=[ |
|
1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, |
|
0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 1.0, 1.0, 1.0, 1.0 |
|
]), |
|
test_cfg=dict(nms_pre=100, nms_thr=0.05, score_thr=0.001, max_per_img=20)) |
|
|
|
backend_args = None |
|
|
|
train_pipeline = [ |
|
dict(type='LoadImageFromFileMono3D', backend_args=backend_args), |
|
dict( |
|
type='LoadAnnotations3D', |
|
with_bbox=True, |
|
with_label=True, |
|
with_attr_label=False, |
|
with_bbox_3d=True, |
|
with_label_3d=True, |
|
with_bbox_depth=True), |
|
dict(type='mmdet.Resize', scale=(1242, 375), keep_ratio=True), |
|
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), |
|
dict( |
|
type='Pack3DDetInputs', |
|
keys=[ |
|
'img', 'gt_bboxes', 'gt_bboxes_labels', 'gt_bboxes_3d', |
|
'gt_labels_3d', 'centers_2d', 'depths' |
|
]), |
|
] |
|
test_pipeline = [ |
|
dict(type='LoadImageFromFileMono3D', backend_args=backend_args), |
|
dict(type='mmdet.Resize', scale_factor=1.0), |
|
dict(type='Pack3DDetInputs', keys=['img']) |
|
] |
|
|
|
train_dataloader = dict( |
|
batch_size=3, num_workers=3, dataset=dict(pipeline=train_pipeline)) |
|
test_dataloader = dict(dataset=dict(pipeline=test_pipeline)) |
|
val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) |
|
|
|
|
|
optim_wrapper = dict( |
|
optimizer=dict(lr=0.001), |
|
paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.), |
|
clip_grad=dict(max_norm=35, norm_type=2)) |
|
|
|
|
|
param_scheduler = [ |
|
dict( |
|
type='LinearLR', |
|
start_factor=1.0 / 3, |
|
by_epoch=False, |
|
begin=0, |
|
end=500), |
|
dict( |
|
type='MultiStepLR', |
|
begin=0, |
|
end=48, |
|
by_epoch=True, |
|
milestones=[32, 44], |
|
gamma=0.1) |
|
] |
|
|
|
train_cfg = dict(max_epochs=48, val_interval=2) |
|
auto_scale_lr = dict(base_batch_size=12) |
|
|