|
|
|
dataset_type = 'S3DISDataset' |
|
data_root = 'data/s3dis/' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
backend_args = None |
|
|
|
metainfo = dict(classes=('table', 'chair', 'sofa', 'bookcase', 'board')) |
|
train_area = [1, 2, 3, 4, 6] |
|
test_area = 5 |
|
|
|
train_pipeline = [ |
|
dict( |
|
type='LoadPointsFromFile', |
|
coord_type='DEPTH', |
|
shift_height=False, |
|
use_color=True, |
|
load_dim=6, |
|
use_dim=[0, 1, 2, 3, 4, 5], |
|
backend_args=backend_args), |
|
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), |
|
dict(type='PointSample', num_points=100000), |
|
dict( |
|
type='RandomFlip3D', |
|
sync_2d=False, |
|
flip_ratio_bev_horizontal=0.5, |
|
flip_ratio_bev_vertical=0.5), |
|
dict( |
|
type='GlobalRotScaleTrans', |
|
rot_range=[-0.087266, 0.087266], |
|
scale_ratio_range=[0.9, 1.1], |
|
translation_std=[.1, .1, .1], |
|
shift_height=False), |
|
dict(type='NormalizePointsColor', color_mean=None), |
|
dict( |
|
type='Pack3DDetInputs', |
|
keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) |
|
] |
|
test_pipeline = [ |
|
dict( |
|
type='LoadPointsFromFile', |
|
coord_type='DEPTH', |
|
shift_height=False, |
|
use_color=True, |
|
load_dim=6, |
|
use_dim=[0, 1, 2, 3, 4, 5], |
|
backend_args=backend_args), |
|
dict( |
|
type='MultiScaleFlipAug3D', |
|
img_scale=(1333, 800), |
|
pts_scale_ratio=1, |
|
flip=False, |
|
transforms=[ |
|
dict( |
|
type='GlobalRotScaleTrans', |
|
rot_range=[0, 0], |
|
scale_ratio_range=[1., 1.], |
|
translation_std=[0, 0, 0]), |
|
dict( |
|
type='RandomFlip3D', |
|
sync_2d=False, |
|
flip_ratio_bev_horizontal=0.5, |
|
flip_ratio_bev_vertical=0.5), |
|
dict(type='PointSample', num_points=100000), |
|
dict(type='NormalizePointsColor', color_mean=None), |
|
]), |
|
dict(type='Pack3DDetInputs', keys=['points']) |
|
] |
|
|
|
train_dataloader = dict( |
|
batch_size=8, |
|
num_workers=4, |
|
sampler=dict(type='DefaultSampler', shuffle=True), |
|
dataset=dict( |
|
type='RepeatDataset', |
|
times=13, |
|
dataset=dict( |
|
type='ConcatDataset', |
|
datasets=[ |
|
dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file=f's3dis_infos_Area_{i}.pkl', |
|
pipeline=train_pipeline, |
|
filter_empty_gt=True, |
|
metainfo=metainfo, |
|
box_type_3d='Depth', |
|
backend_args=backend_args) for i in train_area |
|
]))) |
|
|
|
val_dataloader = dict( |
|
batch_size=1, |
|
num_workers=1, |
|
sampler=dict(type='DefaultSampler', shuffle=False), |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file=f's3dis_infos_Area_{test_area}.pkl', |
|
pipeline=test_pipeline, |
|
metainfo=metainfo, |
|
test_mode=True, |
|
box_type_3d='Depth', |
|
backend_args=backend_args)) |
|
test_dataloader = dict( |
|
batch_size=1, |
|
num_workers=1, |
|
sampler=dict(type='DefaultSampler', shuffle=False), |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file=f's3dis_infos_Area_{test_area}.pkl', |
|
pipeline=test_pipeline, |
|
metainfo=metainfo, |
|
test_mode=True, |
|
box_type_3d='Depth', |
|
backend_args=backend_args)) |
|
val_evaluator = dict(type='IndoorMetric') |
|
test_evaluator = val_evaluator |
|
|
|
vis_backends = [dict(type='LocalVisBackend')] |
|
visualizer = dict( |
|
type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer') |
|
|