|
|
|
|
|
|
|
dataset_type = 'WaymoDataset' |
|
data_root = 'data/waymo/kitti_format/' |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
backend_args = None |
|
|
|
class_names = ['Car'] |
|
metainfo = dict(classes=class_names) |
|
|
|
point_cloud_range = [-74.88, -74.88, -2, 74.88, 74.88, 4] |
|
input_modality = dict(use_lidar=True, use_camera=False) |
|
db_sampler = dict( |
|
data_root=data_root, |
|
info_path=data_root + 'waymo_dbinfos_train.pkl', |
|
rate=1.0, |
|
prepare=dict(filter_by_difficulty=[-1], filter_by_min_points=dict(Car=5)), |
|
classes=class_names, |
|
sample_groups=dict(Car=15), |
|
points_loader=dict( |
|
type='LoadPointsFromFile', |
|
coord_type='LIDAR', |
|
load_dim=6, |
|
use_dim=[0, 1, 2, 3, 4], |
|
backend_args=backend_args), |
|
backend_args=backend_args) |
|
|
|
train_pipeline = [ |
|
dict( |
|
type='LoadPointsFromFile', |
|
coord_type='LIDAR', |
|
load_dim=6, |
|
use_dim=5, |
|
backend_args=backend_args), |
|
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), |
|
dict(type='ObjectSample', db_sampler=db_sampler), |
|
dict( |
|
type='RandomFlip3D', |
|
sync_2d=False, |
|
flip_ratio_bev_horizontal=0.5, |
|
flip_ratio_bev_vertical=0.5), |
|
dict( |
|
type='GlobalRotScaleTrans', |
|
rot_range=[-0.78539816, 0.78539816], |
|
scale_ratio_range=[0.95, 1.05]), |
|
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), |
|
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), |
|
dict(type='PointShuffle'), |
|
dict( |
|
type='Pack3DDetInputs', |
|
keys=['points'], |
|
meta_keys=['box_type_3d', 'sample_idx', 'context_name', 'timestamp']) |
|
] |
|
test_pipeline = [ |
|
dict( |
|
type='LoadPointsFromFile', |
|
coord_type='LIDAR', |
|
load_dim=6, |
|
use_dim=5, |
|
backend_args=backend_args), |
|
dict( |
|
type='MultiScaleFlipAug3D', |
|
img_scale=(1333, 800), |
|
pts_scale_ratio=1, |
|
flip=False, |
|
transforms=[ |
|
dict( |
|
type='GlobalRotScaleTrans', |
|
rot_range=[0, 0], |
|
scale_ratio_range=[1., 1.], |
|
translation_std=[0, 0, 0]), |
|
dict(type='RandomFlip3D'), |
|
dict( |
|
type='PointsRangeFilter', point_cloud_range=point_cloud_range) |
|
]), |
|
dict( |
|
type='Pack3DDetInputs', |
|
keys=['points'], |
|
meta_keys=['box_type_3d', 'sample_idx', 'context_name', 'timestamp']) |
|
] |
|
|
|
|
|
eval_pipeline = [ |
|
dict( |
|
type='LoadPointsFromFile', |
|
coord_type='LIDAR', |
|
load_dim=6, |
|
use_dim=5, |
|
backend_args=backend_args), |
|
dict(type='Pack3DDetInputs', keys=['points']), |
|
] |
|
|
|
train_dataloader = dict( |
|
batch_size=2, |
|
num_workers=2, |
|
persistent_workers=True, |
|
sampler=dict(type='DefaultSampler', shuffle=True), |
|
dataset=dict( |
|
type='RepeatDataset', |
|
times=2, |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
ann_file='waymo_infos_train.pkl', |
|
data_prefix=dict( |
|
pts='training/velodyne', sweeps='training/velodyne'), |
|
pipeline=train_pipeline, |
|
modality=input_modality, |
|
test_mode=False, |
|
metainfo=metainfo, |
|
|
|
|
|
box_type_3d='LiDAR', |
|
|
|
load_interval=5, |
|
backend_args=backend_args))) |
|
val_dataloader = dict( |
|
batch_size=1, |
|
num_workers=1, |
|
persistent_workers=True, |
|
drop_last=False, |
|
sampler=dict(type='DefaultSampler', shuffle=False), |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
data_prefix=dict(pts='training/velodyne', sweeps='training/velodyne'), |
|
ann_file='waymo_infos_val.pkl', |
|
pipeline=eval_pipeline, |
|
modality=input_modality, |
|
test_mode=True, |
|
metainfo=metainfo, |
|
box_type_3d='LiDAR', |
|
backend_args=backend_args)) |
|
|
|
test_dataloader = dict( |
|
batch_size=1, |
|
num_workers=1, |
|
persistent_workers=True, |
|
drop_last=False, |
|
sampler=dict(type='DefaultSampler', shuffle=False), |
|
dataset=dict( |
|
type=dataset_type, |
|
data_root=data_root, |
|
data_prefix=dict(pts='training/velodyne', sweeps='training/velodyne'), |
|
ann_file='waymo_infos_val.pkl', |
|
pipeline=eval_pipeline, |
|
modality=input_modality, |
|
test_mode=True, |
|
metainfo=metainfo, |
|
box_type_3d='LiDAR', |
|
backend_args=backend_args)) |
|
|
|
val_evaluator = dict( |
|
type='WaymoMetric', waymo_bin_file='./data/waymo/waymo_format/gt.bin') |
|
test_evaluator = val_evaluator |
|
|
|
vis_backends = [dict(type='LocalVisBackend')] |
|
visualizer = dict( |
|
type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer') |
|
|