|
|
|
model = dict( |
|
type='EncoderDecoder3D', |
|
data_preprocessor=dict(type='Det3DDataPreprocessor'), |
|
backbone=dict( |
|
type='PointNet2SASSG', |
|
in_channels=9, |
|
num_points=(1024, 256, 64, 16), |
|
radius=(None, None, None, None), |
|
num_samples=(32, 32, 32, 32), |
|
sa_channels=((32, 32, 64), (64, 64, 128), (128, 128, 256), (256, 256, |
|
512)), |
|
fp_channels=(), |
|
norm_cfg=dict(type='BN2d', momentum=0.1), |
|
sa_cfg=dict( |
|
type='PAConvSAModule', |
|
pool_mod='max', |
|
use_xyz=True, |
|
normalize_xyz=False, |
|
paconv_num_kernels=[16, 16, 16], |
|
paconv_kernel_input='w_neighbor', |
|
scorenet_input='w_neighbor_dist', |
|
scorenet_cfg=dict( |
|
mlp_channels=[16, 16, 16], |
|
score_norm='softmax', |
|
temp_factor=1.0, |
|
last_bn=False))), |
|
decode_head=dict( |
|
type='PAConvHead', |
|
|
|
|
|
|
|
fp_channels=((768, 256, 256), (384, 256, 256), (320, 256, 128), |
|
(128 + 6, 128, 128, 128)), |
|
channels=128, |
|
dropout_ratio=0.5, |
|
conv_cfg=dict(type='Conv1d'), |
|
norm_cfg=dict(type='BN1d'), |
|
act_cfg=dict(type='ReLU'), |
|
loss_decode=dict( |
|
type='mmdet.CrossEntropyLoss', |
|
use_sigmoid=False, |
|
class_weight=None, |
|
loss_weight=1.0)), |
|
|
|
loss_regularization=dict( |
|
type='PAConvRegularizationLoss', reduction='sum', loss_weight=10.0), |
|
|
|
train_cfg=dict(), |
|
test_cfg=dict(mode='slide')) |
|
|