3dtest / configs /_base_ /models /paconv_ssg.py
giantmonkeyTC
mm2
c2ca15f
# model settings
model = dict(
type='EncoderDecoder3D',
data_preprocessor=dict(type='Det3DDataPreprocessor'),
backbone=dict(
type='PointNet2SASSG',
in_channels=9, # [xyz, rgb, normalized_xyz]
num_points=(1024, 256, 64, 16),
radius=(None, None, None, None), # use kNN instead of ball query
num_samples=(32, 32, 32, 32),
sa_channels=((32, 32, 64), (64, 64, 128), (128, 128, 256), (256, 256,
512)),
fp_channels=(),
norm_cfg=dict(type='BN2d', momentum=0.1),
sa_cfg=dict(
type='PAConvSAModule',
pool_mod='max',
use_xyz=True,
normalize_xyz=False,
paconv_num_kernels=[16, 16, 16],
paconv_kernel_input='w_neighbor',
scorenet_input='w_neighbor_dist',
scorenet_cfg=dict(
mlp_channels=[16, 16, 16],
score_norm='softmax',
temp_factor=1.0,
last_bn=False))),
decode_head=dict(
type='PAConvHead',
# PAConv model's decoder takes skip connections from beckbone
# different from PointNet++, it also concats input features in the last
# level of decoder, leading to `128 + 6` as the channel number
fp_channels=((768, 256, 256), (384, 256, 256), (320, 256, 128),
(128 + 6, 128, 128, 128)),
channels=128,
dropout_ratio=0.5,
conv_cfg=dict(type='Conv1d'),
norm_cfg=dict(type='BN1d'),
act_cfg=dict(type='ReLU'),
loss_decode=dict(
type='mmdet.CrossEntropyLoss',
use_sigmoid=False,
class_weight=None, # should be modified with dataset
loss_weight=1.0)),
# correlation loss to regularize PAConv's kernel weights
loss_regularization=dict(
type='PAConvRegularizationLoss', reduction='sum', loss_weight=10.0),
# model training and testing settings
train_cfg=dict(),
test_cfg=dict(mode='slide'))