giantmonkeyTC
mm2
c2ca15f
# model settings
model = dict(
type='SMOKEMono3D',
data_preprocessor=dict(
type='Det3DDataPreprocessor',
mean=[123.675, 116.28, 103.53],
std=[58.395, 57.12, 57.375],
bgr_to_rgb=True,
pad_size_divisor=32),
backbone=dict(
type='DLANet',
depth=34,
in_channels=3,
norm_cfg=dict(type='GN', num_groups=32),
init_cfg=dict(
type='Pretrained',
checkpoint='http://dl.yf.io/dla/models/imagenet/dla34-ba72cf86.pth'
)),
neck=dict(
type='DLANeck',
in_channels=[16, 32, 64, 128, 256, 512],
start_level=2,
end_level=5,
norm_cfg=dict(type='GN', num_groups=32)),
bbox_head=dict(
type='SMOKEMono3DHead',
num_classes=3,
in_channels=64,
dim_channel=[3, 4, 5],
ori_channel=[6, 7],
stacked_convs=0,
feat_channels=64,
use_direction_classifier=False,
diff_rad_by_sin=False,
pred_attrs=False,
pred_velo=False,
dir_offset=0,
strides=None,
group_reg_dims=(8, ),
cls_branch=(256, ),
reg_branch=((256, ), ),
num_attrs=0,
bbox_code_size=7,
dir_branch=(),
attr_branch=(),
bbox_coder=dict(
type='SMOKECoder',
base_depth=(28.01, 16.32),
base_dims=((0.88, 1.73, 0.67), (1.78, 1.70, 0.58), (3.88, 1.63,
1.53)),
code_size=7),
loss_cls=dict(type='mmdet.GaussianFocalLoss', loss_weight=1.0),
loss_bbox=dict(
type='mmdet.L1Loss', reduction='sum', loss_weight=1 / 300),
loss_dir=dict(
type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0),
loss_attr=None,
conv_bias=True,
dcn_on_last_conv=False),
train_cfg=None,
test_cfg=dict(topK=100, local_maximum_kernel=3, max_per_img=100))