|
model = dict( |
|
type='MinkUNet', |
|
data_preprocessor=dict( |
|
type='Det3DDataPreprocessor', |
|
voxel=True, |
|
voxel_type='minkunet', |
|
batch_first=False, |
|
max_voxels=80000, |
|
voxel_layer=dict( |
|
max_num_points=-1, |
|
point_cloud_range=[-100, -100, -20, 100, 100, 20], |
|
voxel_size=[0.05, 0.05, 0.05], |
|
max_voxels=(-1, -1))), |
|
backbone=dict( |
|
type='SPVCNNBackbone', |
|
in_channels=4, |
|
num_stages=4, |
|
base_channels=32, |
|
encoder_channels=[32, 64, 128, 256], |
|
encoder_blocks=[2, 2, 2, 2], |
|
decoder_channels=[256, 128, 96, 96], |
|
decoder_blocks=[2, 2, 2, 2], |
|
block_type='basic', |
|
sparseconv_backend='torchsparse', |
|
drop_ratio=0.3), |
|
decode_head=dict( |
|
type='MinkUNetHead', |
|
channels=96, |
|
num_classes=19, |
|
dropout_ratio=0, |
|
loss_decode=dict(type='mmdet.CrossEntropyLoss', avg_non_ignore=True), |
|
ignore_index=19), |
|
train_cfg=dict(), |
|
test_cfg=dict()) |
|
|