giantmonkeyTC
mm2
c2ca15f
model = dict(
type='VoteNet',
data_preprocessor=dict(type='Det3DDataPreprocessor'),
backbone=dict(
type='PointNet2SASSG',
in_channels=4,
num_points=(2048, 1024, 512, 256),
radius=(0.2, 0.4, 0.8, 1.2),
num_samples=(64, 32, 16, 16),
sa_channels=((64, 64, 128), (128, 128, 256), (128, 128, 256),
(128, 128, 256)),
fp_channels=((256, 256), (256, 256)),
norm_cfg=dict(type='BN2d'),
sa_cfg=dict(
type='PointSAModule',
pool_mod='max',
use_xyz=True,
normalize_xyz=True)),
bbox_head=dict(
type='VoteHead',
vote_module_cfg=dict(
in_channels=256,
vote_per_seed=1,
gt_per_seed=3,
conv_channels=(256, 256),
conv_cfg=dict(type='Conv1d'),
norm_cfg=dict(type='BN1d'),
norm_feats=True,
vote_loss=dict(
type='ChamferDistance',
mode='l1',
reduction='none',
loss_dst_weight=10.0)),
vote_aggregation_cfg=dict(
type='PointSAModule',
num_point=256,
radius=0.3,
num_sample=16,
mlp_channels=[256, 128, 128, 128],
use_xyz=True,
normalize_xyz=True),
pred_layer_cfg=dict(
in_channels=128, shared_conv_channels=(128, 128), bias=True),
objectness_loss=dict(
type='mmdet.CrossEntropyLoss',
class_weight=[0.2, 0.8],
reduction='sum',
loss_weight=5.0),
center_loss=dict(
type='ChamferDistance',
mode='l2',
reduction='sum',
loss_src_weight=10.0,
loss_dst_weight=10.0),
dir_class_loss=dict(
type='mmdet.CrossEntropyLoss', reduction='sum', loss_weight=1.0),
dir_res_loss=dict(
type='mmdet.SmoothL1Loss', reduction='sum', loss_weight=10.0),
size_class_loss=dict(
type='mmdet.CrossEntropyLoss', reduction='sum', loss_weight=1.0),
size_res_loss=dict(
type='mmdet.SmoothL1Loss', reduction='sum',
loss_weight=10.0 / 3.0),
semantic_loss=dict(
type='mmdet.CrossEntropyLoss', reduction='sum', loss_weight=1.0)),
# model training and testing settings
train_cfg=dict(
pos_distance_thr=0.3, neg_distance_thr=0.6, sample_mode='vote'),
test_cfg=dict(
sample_mode='seed',
nms_thr=0.25,
score_thr=0.05,
per_class_proposal=True))