|
_base_ = './htc_r50_fpn_head-without-semantic_1x_nuim.py' |
|
model = dict( |
|
roi_head=dict( |
|
semantic_roi_extractor=dict( |
|
type='SingleRoIExtractor', |
|
roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), |
|
out_channels=256, |
|
featmap_strides=[8]), |
|
semantic_head=dict( |
|
type='FusedSemanticHead', |
|
num_ins=5, |
|
fusion_level=1, |
|
num_convs=4, |
|
in_channels=256, |
|
conv_out_channels=256, |
|
num_classes=32, |
|
ignore_label=0, |
|
loss_weight=0.2))) |
|
|
|
data_root = 'data/nuimages/' |
|
backend_args = None |
|
train_pipeline = [ |
|
dict(type='LoadImageFromFile', backend_args=backend_args), |
|
dict( |
|
type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True), |
|
dict( |
|
type='Resize', |
|
img_scale=[(1280, 720), (1920, 1080)], |
|
multiscale_mode='range', |
|
keep_ratio=True), |
|
dict(type='RandomFlip', flip_ratio=0.5), |
|
dict(type='SegRescale', scale_factor=1 / 8), |
|
dict(type='PackDetInputs') |
|
] |
|
data = dict( |
|
train=dict( |
|
seg_prefix=data_root + 'annotations/semantic_masks/', |
|
pipeline=train_pipeline)) |
|
|