|
_base_ = [ |
|
'../_base_/datasets/waymoD5-fov-mono3d-3class.py', |
|
'../_base_/models/pgd.py', '../_base_/schedules/mmdet-schedule-1x.py', |
|
'../_base_/default_runtime.py' |
|
] |
|
|
|
model = dict( |
|
backbone=dict( |
|
type='mmdet.ResNet', |
|
depth=101, |
|
num_stages=4, |
|
out_indices=(0, 1, 2, 3), |
|
frozen_stages=1, |
|
norm_cfg=dict(type='BN', requires_grad=True), |
|
norm_eval=True, |
|
style='pytorch', |
|
init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet101'), |
|
dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False), |
|
stage_with_dcn=(False, False, True, True)), |
|
neck=dict(num_outs=3), |
|
bbox_head=dict( |
|
num_classes=3, |
|
bbox_code_size=7, |
|
pred_attrs=False, |
|
pred_velo=False, |
|
pred_bbox2d=True, |
|
use_onlyreg_proj=True, |
|
strides=(8, 16, 32), |
|
regress_ranges=((-1, 128), (128, 256), (256, 1e8)), |
|
group_reg_dims=(2, 1, 3, 1, 16, |
|
4), |
|
reg_branch=( |
|
(256, ), |
|
(256, ), |
|
(256, ), |
|
(256, ), |
|
(256, ), |
|
(256, ) |
|
), |
|
centerness_branch=(256, ), |
|
loss_cls=dict( |
|
type='mmdet.FocalLoss', |
|
use_sigmoid=True, |
|
gamma=2.0, |
|
alpha=0.25, |
|
loss_weight=1.0), |
|
loss_bbox=dict( |
|
type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), |
|
loss_dir=dict( |
|
type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=1.0), |
|
loss_centerness=dict( |
|
type='mmdet.CrossEntropyLoss', use_sigmoid=True, loss_weight=1.0), |
|
use_depth_classifier=True, |
|
depth_branch=(256, ), |
|
depth_range=(0, 50), |
|
depth_unit=10, |
|
division='uniform', |
|
depth_bins=6, |
|
pred_keypoints=True, |
|
weight_dim=1, |
|
loss_depth=dict( |
|
type='UncertainSmoothL1Loss', alpha=1.0, beta=3.0, |
|
loss_weight=1.0), |
|
loss_bbox2d=dict( |
|
type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=0.0), |
|
loss_consistency=dict(type='mmdet.GIoULoss', loss_weight=0.0), |
|
bbox_coder=dict( |
|
type='PGDBBoxCoder', |
|
base_depths=((41.01, 18.44), ), |
|
base_dims=( |
|
(4.73, 1.77, 2.08), |
|
(0.91, 1.74, 0.84), |
|
(1.81, 1.77, 0.84), |
|
), |
|
code_size=7)), |
|
|
|
|
|
train_cfg=dict(code_weight=[ |
|
1.0, 1.0, 0.2, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, |
|
0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 1.0, 1.0, 1.0, 1.0 |
|
]), |
|
test_cfg=dict(nms_pre=100, nms_thr=0.05, score_thr=0.001, max_per_img=20)) |
|
|
|
|
|
optim_wrapper = dict( |
|
optimizer=dict( |
|
type='SGD', |
|
lr=0.008, |
|
), |
|
paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.), |
|
clip_grad=dict(max_norm=35, norm_type=2)) |
|
|
|
param_scheduler = [ |
|
dict( |
|
type='LinearLR', |
|
start_factor=1.0 / 3, |
|
by_epoch=False, |
|
begin=0, |
|
end=500), |
|
dict( |
|
type='MultiStepLR', |
|
begin=0, |
|
end=24, |
|
by_epoch=True, |
|
milestones=[16, 22], |
|
gamma=0.1) |
|
] |
|
|
|
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=24, val_interval=24) |
|
val_cfg = dict(type='ValLoop') |
|
test_cfg = dict(type='TestLoop') |
|
auto_scale_lr = dict(base_batch_size=48) |
|
|