|
_base_ = [ |
|
'../_base_/datasets/kitti-3d-car.py', '../_base_/models/point_rcnn.py', |
|
'../_base_/default_runtime.py', '../_base_/schedules/cyclic-40e.py' |
|
] |
|
|
|
|
|
dataset_type = 'KittiDataset' |
|
data_root = 'data/kitti/' |
|
class_names = ['Pedestrian', 'Cyclist', 'Car'] |
|
metainfo = dict(classes=class_names) |
|
point_cloud_range = [0, -40, -3, 70.4, 40, 1] |
|
input_modality = dict(use_lidar=True, use_camera=False) |
|
backend_args = None |
|
|
|
db_sampler = dict( |
|
data_root=data_root, |
|
info_path=data_root + 'kitti_dbinfos_train.pkl', |
|
rate=1.0, |
|
prepare=dict( |
|
filter_by_difficulty=[-1], |
|
filter_by_min_points=dict(Car=5, Pedestrian=5, Cyclist=5)), |
|
sample_groups=dict(Car=20, Pedestrian=15, Cyclist=15), |
|
classes=class_names, |
|
points_loader=dict( |
|
type='LoadPointsFromFile', |
|
coord_type='LIDAR', |
|
load_dim=4, |
|
use_dim=4, |
|
backend_args=backend_args), |
|
backend_args=backend_args) |
|
|
|
train_pipeline = [ |
|
dict( |
|
type='LoadPointsFromFile', |
|
coord_type='LIDAR', |
|
load_dim=4, |
|
use_dim=4, |
|
backend_args=backend_args), |
|
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), |
|
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), |
|
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), |
|
dict(type='ObjectSample', db_sampler=db_sampler), |
|
dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), |
|
dict( |
|
type='ObjectNoise', |
|
num_try=100, |
|
translation_std=[1.0, 1.0, 0.5], |
|
global_rot_range=[0.0, 0.0], |
|
rot_range=[-0.78539816, 0.78539816]), |
|
dict( |
|
type='GlobalRotScaleTrans', |
|
rot_range=[-0.78539816, 0.78539816], |
|
scale_ratio_range=[0.95, 1.05]), |
|
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), |
|
dict(type='PointSample', num_points=16384, sample_range=40.0), |
|
dict(type='PointShuffle'), |
|
dict( |
|
type='Pack3DDetInputs', |
|
keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) |
|
] |
|
test_pipeline = [ |
|
dict( |
|
type='LoadPointsFromFile', |
|
coord_type='LIDAR', |
|
load_dim=4, |
|
use_dim=4, |
|
backend_args=backend_args), |
|
dict( |
|
type='MultiScaleFlipAug3D', |
|
img_scale=(1333, 800), |
|
pts_scale_ratio=1, |
|
flip=False, |
|
transforms=[ |
|
dict( |
|
type='GlobalRotScaleTrans', |
|
rot_range=[0, 0], |
|
scale_ratio_range=[1., 1.], |
|
translation_std=[0, 0, 0]), |
|
dict(type='RandomFlip3D'), |
|
dict( |
|
type='PointsRangeFilter', point_cloud_range=point_cloud_range), |
|
dict(type='PointSample', num_points=16384, sample_range=40.0) |
|
]), |
|
dict(type='Pack3DDetInputs', keys=['points']) |
|
] |
|
train_dataloader = dict( |
|
batch_size=2, |
|
num_workers=2, |
|
dataset=dict( |
|
type='RepeatDataset', |
|
times=2, |
|
dataset=dict(pipeline=train_pipeline, metainfo=metainfo))) |
|
test_dataloader = dict(dataset=dict(pipeline=test_pipeline, metainfo=metainfo)) |
|
val_dataloader = dict(dataset=dict(pipeline=test_pipeline, metainfo=metainfo)) |
|
|
|
lr = 0.001 |
|
optim_wrapper = dict(optimizer=dict(lr=lr, betas=(0.95, 0.85))) |
|
train_cfg = dict(by_epoch=True, max_epochs=80, val_interval=2) |
|
|
|
|
|
|
|
|
|
|
|
auto_scale_lr = dict(enable=False, base_batch_size=16) |
|
param_scheduler = [ |
|
|
|
|
|
|
|
|
|
dict( |
|
type='CosineAnnealingLR', |
|
T_max=35, |
|
eta_min=lr * 10, |
|
begin=0, |
|
end=35, |
|
by_epoch=True, |
|
convert_to_iter_based=True), |
|
dict( |
|
type='CosineAnnealingLR', |
|
T_max=45, |
|
eta_min=lr * 1e-4, |
|
begin=35, |
|
end=80, |
|
by_epoch=True, |
|
convert_to_iter_based=True), |
|
|
|
|
|
|
|
dict( |
|
type='CosineAnnealingMomentum', |
|
T_max=35, |
|
eta_min=0.85 / 0.95, |
|
begin=0, |
|
end=35, |
|
by_epoch=True, |
|
convert_to_iter_based=True), |
|
dict( |
|
type='CosineAnnealingMomentum', |
|
T_max=45, |
|
eta_min=1, |
|
begin=35, |
|
end=80, |
|
by_epoch=True, |
|
convert_to_iter_based=True) |
|
] |
|
|