3dtest / configs /pointnet2 /pointnet2_msg_2xb16-cosine-250e_scannet-seg.py
giantmonkeyTC
mm2
c2ca15f
_base_ = [
'../_base_/datasets/scannet-seg.py', '../_base_/models/pointnet2_msg.py',
'../_base_/schedules/seg-cosine-200e.py', '../_base_/default_runtime.py'
]
# model settings
model = dict(
decode_head=dict(
num_classes=20,
ignore_index=20,
# `class_weight` is generated in data pre-processing, saved in
# `data/scannet/seg_info/train_label_weight.npy`
# you can copy paste the values here, or input the file path as
# `class_weight=data/scannet/seg_info/train_label_weight.npy`
loss_decode=dict(class_weight=[
2.389689, 2.7215734, 4.5944676, 4.8543367, 4.096086, 4.907941,
4.690836, 4.512031, 4.623311, 4.9242644, 5.358117, 5.360071,
5.019636, 4.967126, 5.3502126, 5.4023647, 5.4027233, 5.4169416,
5.3954206, 4.6971426
])),
test_cfg=dict(
num_points=8192,
block_size=1.5,
sample_rate=0.5,
use_normalized_coord=False,
batch_size=24))
# data settings
train_dataloader = dict(batch_size=16)
# runtime settings
default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=5))
# PointNet2-MSG needs longer training time than PointNet2-SSG
train_cfg = dict(by_epoch=True, max_epochs=250, val_interval=5)