3dtest / configs /ssn /ssn_hv_secfpn_sbn-all_16xb2-2x_nus-3d.py
giantmonkeyTC
mm2
c2ca15f
_base_ = [
'../_base_/models/pointpillars_hv_fpn_nus.py',
'../_base_/datasets/nus-3d.py',
'../_base_/schedules/schedule-2x.py',
'../_base_/default_runtime.py',
]
# Note that the order of class names should be consistent with
# the following anchors' order
point_cloud_range = [-50, -50, -5, 50, 50, 3]
class_names = [
'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier', 'car',
'truck', 'trailer', 'bus', 'construction_vehicle'
]
backend_args = None
train_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=5,
use_dim=5,
backend_args=backend_args),
dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=10,
backend_args=backend_args),
dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True),
dict(
type='GlobalRotScaleTrans',
rot_range=[-0.3925, 0.3925],
scale_ratio_range=[0.95, 1.05],
translation_std=[0, 0, 0]),
dict(
type='RandomFlip3D',
sync_2d=False,
flip_ratio_bev_horizontal=0.5,
flip_ratio_bev_vertical=0.5),
dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range),
dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range),
dict(type='PointShuffle'),
dict(
type='Pack3DDetInputs',
keys=['points', 'gt_bboxes_3d', 'gt_labels_3d'])
]
test_pipeline = [
dict(
type='LoadPointsFromFile',
coord_type='LIDAR',
load_dim=5,
use_dim=5,
backend_args=backend_args),
dict(
type='LoadPointsFromMultiSweeps',
sweeps_num=10,
backend_args=backend_args),
dict(
type='MultiScaleFlipAug3D',
img_scale=(1333, 800),
pts_scale_ratio=1,
flip=False,
transforms=[
dict(
type='GlobalRotScaleTrans',
rot_range=[0, 0],
scale_ratio_range=[1., 1.],
translation_std=[0, 0, 0]),
dict(type='RandomFlip3D'),
dict(
type='PointsRangeFilter', point_cloud_range=point_cloud_range)
]),
dict(type='Pack3DDetInputs', keys=['points'])
]
train_dataloader = dict(
batch_size=2,
num_workers=4,
dataset=dict(pipeline=train_pipeline, metainfo=dict(classes=class_names)))
test_dataloader = dict(
dataset=dict(pipeline=test_pipeline, metainfo=dict(classes=class_names)))
val_dataloader = dict(
dataset=dict(pipeline=test_pipeline, metainfo=dict(classes=class_names)))
# model settings
model = dict(
data_preprocessor=dict(voxel_layer=dict(max_num_points=20)),
pts_voxel_encoder=dict(feat_channels=[64, 64]),
pts_neck=dict(
_delete_=True,
type='SECONDFPN',
norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01),
in_channels=[64, 128, 256],
upsample_strides=[1, 2, 4],
out_channels=[128, 128, 128]),
pts_bbox_head=dict(
_delete_=True,
type='ShapeAwareHead',
num_classes=10,
in_channels=384,
feat_channels=384,
use_direction_classifier=True,
anchor_generator=dict(
type='AlignedAnchor3DRangeGeneratorPerCls',
ranges=[[-50, -50, -1.67339111, 50, 50, -1.67339111],
[-50, -50, -1.71396371, 50, 50, -1.71396371],
[-50, -50, -1.61785072, 50, 50, -1.61785072],
[-50, -50, -1.80984986, 50, 50, -1.80984986],
[-50, -50, -1.76396500, 50, 50, -1.76396500],
[-50, -50, -1.80032795, 50, 50, -1.80032795],
[-50, -50, -1.74440365, 50, 50, -1.74440365],
[-50, -50, -1.68526504, 50, 50, -1.68526504],
[-50, -50, -1.80673031, 50, 50, -1.80673031],
[-50, -50, -1.64824291, 50, 50, -1.64824291]],
sizes=[
[1.68452161, 0.60058911, 1.27192197], # bicycle
[2.09973778, 0.76279481, 1.44403034], # motorcycle
[0.72564370, 0.66344886, 1.75748069], # pedestrian
[0.40359262, 0.39694519, 1.06232151], # traffic cone
[0.48578221, 2.49008838, 0.98297065], # barrier
[4.60718145, 1.95017717, 1.72270761], # car
[6.73778078, 2.45609390, 2.73004906], # truck
[12.01320693, 2.87427237, 3.81509561], # trailer
[11.1885991, 2.94046906, 3.47030982], # bus
[6.38352896, 2.73050468, 3.13312415] # construction vehicle
],
custom_values=[0, 0],
rotations=[0, 1.57],
reshape_out=False),
tasks=[
dict(
num_class=2,
class_names=['bicycle', 'motorcycle'],
shared_conv_channels=(64, 64),
shared_conv_strides=(1, 1),
norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01)),
dict(
num_class=1,
class_names=['pedestrian'],
shared_conv_channels=(64, 64),
shared_conv_strides=(1, 1),
norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01)),
dict(
num_class=2,
class_names=['traffic_cone', 'barrier'],
shared_conv_channels=(64, 64),
shared_conv_strides=(1, 1),
norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01)),
dict(
num_class=1,
class_names=['car'],
shared_conv_channels=(64, 64, 64),
shared_conv_strides=(2, 1, 1),
norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01)),
dict(
num_class=4,
class_names=[
'truck', 'trailer', 'bus', 'construction_vehicle'
],
shared_conv_channels=(64, 64, 64),
shared_conv_strides=(2, 1, 1),
norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01))
],
assign_per_class=True,
diff_rad_by_sin=True,
dir_offset=-0.7854, # -pi/4
dir_limit_offset=0,
bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder', code_size=9),
loss_cls=dict(
type='mmdet.FocalLoss',
use_sigmoid=True,
gamma=2.0,
alpha=0.25,
loss_weight=1.0),
loss_bbox=dict(
type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0),
loss_dir=dict(
type='mmdet.CrossEntropyLoss', use_sigmoid=False,
loss_weight=0.2)),
# model training and testing settings
train_cfg=dict(
_delete_=True,
pts=dict(
assigner=[
dict( # bicycle
type='Max3DIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.35,
min_pos_iou=0.35,
ignore_iof_thr=-1),
dict( # motorcycle
type='Max3DIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.3,
min_pos_iou=0.3,
ignore_iof_thr=-1),
dict( # pedestrian
type='Max3DIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.6,
neg_iou_thr=0.4,
min_pos_iou=0.4,
ignore_iof_thr=-1),
dict( # traffic cone
type='Max3DIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.6,
neg_iou_thr=0.4,
min_pos_iou=0.4,
ignore_iof_thr=-1),
dict( # barrier
type='Max3DIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.55,
neg_iou_thr=0.4,
min_pos_iou=0.4,
ignore_iof_thr=-1),
dict( # car
type='Max3DIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.6,
neg_iou_thr=0.45,
min_pos_iou=0.45,
ignore_iof_thr=-1),
dict( # truck
type='Max3DIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.55,
neg_iou_thr=0.4,
min_pos_iou=0.4,
ignore_iof_thr=-1),
dict( # trailer
type='Max3DIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.35,
min_pos_iou=0.35,
ignore_iof_thr=-1),
dict( # bus
type='Max3DIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.55,
neg_iou_thr=0.4,
min_pos_iou=0.4,
ignore_iof_thr=-1),
dict( # construction vehicle
type='Max3DIoUAssigner',
iou_calculator=dict(type='BboxOverlapsNearest3D'),
pos_iou_thr=0.5,
neg_iou_thr=0.35,
min_pos_iou=0.35,
ignore_iof_thr=-1)
],
allowed_border=0,
code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.2, 0.2],
pos_weight=-1,
debug=False)))