giantmonkeyTC
mm2
c2ca15f
# Copyright (c) OpenMMLab. All rights reserved.
from typing import List, Tuple, Union
import torch
from mmcv.cnn import ConvModule
from mmengine.model import BaseModule
from torch import Tensor
from torch import nn as nn
from torch.nn import functional as F
from mmdet3d.registry import MODELS
from mmdet3d.structures.bbox_3d import (get_proj_mat_by_coord_type,
points_cam2img, points_img2cam)
from mmdet3d.utils import OptConfigType, OptMultiConfig
from . import apply_3d_transformation
def point_sample(img_meta: dict,
img_features: Tensor,
points: Tensor,
proj_mat: Tensor,
coord_type: str,
img_scale_factor: Tensor,
img_crop_offset: Tensor,
img_flip: bool,
img_pad_shape: Tuple[int],
img_shape: Tuple[int],
aligned: bool = True,
padding_mode: str = 'zeros',
align_corners: bool = True,
valid_flag: bool = False) -> Tensor:
"""Obtain image features using points.
Args:
img_meta (dict): Meta info.
img_features (Tensor): 1 x C x H x W image features.
points (Tensor): Nx3 point cloud in LiDAR coordinates.
proj_mat (Tensor): 4x4 transformation matrix.
coord_type (str): 'DEPTH' or 'CAMERA' or 'LIDAR'.
img_scale_factor (Tensor): Scale factor with shape of
(w_scale, h_scale).
img_crop_offset (Tensor): Crop offset used to crop image during
data augmentation with shape of (w_offset, h_offset).
img_flip (bool): Whether the image is flipped.
img_pad_shape (Tuple[int]): Int tuple indicates the h & w after
padding. This is necessary to obtain features in feature map.
img_shape (Tuple[int]): Int tuple indicates the h & w before padding
after scaling. This is necessary for flipping coordinates.
aligned (bool): Whether to use bilinear interpolation when
sampling image features for each point. Defaults to True.
padding_mode (str): Padding mode when padding values for
features of out-of-image points. Defaults to 'zeros'.
align_corners (bool): Whether to align corners when
sampling image features for each point. Defaults to True.
valid_flag (bool): Whether to filter out the points that outside
the image and with depth smaller than 0. Defaults to False.
Returns:
Tensor: NxC image features sampled by point coordinates.
"""
# apply transformation based on info in img_meta
points = apply_3d_transformation(
points, coord_type, img_meta, reverse=True)
# project points to image coordinate
if valid_flag:
proj_pts = points_cam2img(points, proj_mat, with_depth=True)
pts_2d = proj_pts[..., :2]
depths = proj_pts[..., 2]
else:
pts_2d = points_cam2img(points, proj_mat)
# img transformation: scale -> crop -> flip
# the image is resized by img_scale_factor
img_coors = pts_2d[:, 0:2] * img_scale_factor # Nx2
img_coors -= img_crop_offset
# grid sample, the valid grid range should be in [-1,1]
coor_x, coor_y = torch.split(img_coors, 1, dim=1) # each is Nx1
if img_flip:
# by default we take it as horizontal flip
# use img_shape before padding for flip
ori_h, ori_w = img_shape
coor_x = ori_w - coor_x
h, w = img_pad_shape
norm_coor_y = coor_y / h * 2 - 1
norm_coor_x = coor_x / w * 2 - 1
grid = torch.cat([norm_coor_x, norm_coor_y],
dim=1).unsqueeze(0).unsqueeze(0) # Nx2 -> 1x1xNx2
# align_corner=True provides higher performance
mode = 'bilinear' if aligned else 'nearest'
point_features = F.grid_sample(
img_features,
grid,
mode=mode,
padding_mode=padding_mode,
align_corners=align_corners) # 1xCx1xN feats
if valid_flag:
# (N, )
valid = (coor_x.squeeze() < w) & (coor_x.squeeze() > 0) & (
coor_y.squeeze() < h) & (coor_y.squeeze() > 0) & (
depths > 0)
valid_features = point_features.squeeze().t()
valid_features[~valid] = 0
return valid_features, valid # (N, C), (N,)
return point_features.squeeze().t()
@MODELS.register_module()
class PointFusion(BaseModule):
"""Fuse image features from multi-scale features.
Args:
img_channels (List[int] or int): Channels of image features.
It could be a list if the input is multi-scale image features.
pts_channels (int): Channels of point features
mid_channels (int): Channels of middle layers
out_channels (int): Channels of output fused features
img_levels (List[int] or int): Number of image levels. Defaults to 3.
coord_type (str): 'DEPTH' or 'CAMERA' or 'LIDAR'. Defaults to 'LIDAR'.
conv_cfg (:obj:`ConfigDict` or dict): Config dict for convolution
layers of middle layers. Defaults to None.
norm_cfg (:obj:`ConfigDict` or dict): Config dict for normalization
layers of middle layers. Defaults to None.
act_cfg (:obj:`ConfigDict` or dict): Config dict for activation layer.
Defaults to None.
init_cfg (:obj:`ConfigDict` or dict or List[:obj:`Contigdict` or dict],
optional): Initialization config dict. Defaults to None.
activate_out (bool): Whether to apply relu activation to output
features. Defaults to True.
fuse_out (bool): Whether to apply conv layer to the fused features.
Defaults to False.
dropout_ratio (int or float): Dropout ratio of image features to
prevent overfitting. Defaults to 0.
aligned (bool): Whether to apply aligned feature fusion.
Defaults to True.
align_corners (bool): Whether to align corner when sampling features
according to points. Defaults to True.
padding_mode (str): Mode used to pad the features of points that do not
have corresponding image features. Defaults to 'zeros'.
lateral_conv (bool): Whether to apply lateral convs to image features.
Defaults to True.
"""
def __init__(self,
img_channels: Union[List[int], int],
pts_channels: int,
mid_channels: int,
out_channels: int,
img_levels: Union[List[int], int] = 3,
coord_type: str = 'LIDAR',
conv_cfg: OptConfigType = None,
norm_cfg: OptConfigType = None,
act_cfg: OptConfigType = None,
init_cfg: OptMultiConfig = None,
activate_out: bool = True,
fuse_out: bool = False,
dropout_ratio: Union[int, float] = 0,
aligned: bool = True,
align_corners: bool = True,
padding_mode: str = 'zeros',
lateral_conv: bool = True) -> None:
super(PointFusion, self).__init__(init_cfg=init_cfg)
if isinstance(img_levels, int):
img_levels = [img_levels]
if isinstance(img_channels, int):
img_channels = [img_channels] * len(img_levels)
assert isinstance(img_levels, list)
assert isinstance(img_channels, list)
assert len(img_channels) == len(img_levels)
self.img_levels = img_levels
self.coord_type = coord_type
self.act_cfg = act_cfg
self.activate_out = activate_out
self.fuse_out = fuse_out
self.dropout_ratio = dropout_ratio
self.img_channels = img_channels
self.aligned = aligned
self.align_corners = align_corners
self.padding_mode = padding_mode
self.lateral_convs = None
if lateral_conv:
self.lateral_convs = nn.ModuleList()
for i in range(len(img_channels)):
l_conv = ConvModule(
img_channels[i],
mid_channels,
3,
padding=1,
conv_cfg=conv_cfg,
norm_cfg=norm_cfg,
act_cfg=self.act_cfg,
inplace=False)
self.lateral_convs.append(l_conv)
self.img_transform = nn.Sequential(
nn.Linear(mid_channels * len(img_channels), out_channels),
nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01),
)
else:
self.img_transform = nn.Sequential(
nn.Linear(sum(img_channels), out_channels),
nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01),
)
self.pts_transform = nn.Sequential(
nn.Linear(pts_channels, out_channels),
nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01),
)
if self.fuse_out:
self.fuse_conv = nn.Sequential(
nn.Linear(mid_channels, out_channels),
# For pts the BN is initialized differently by default
# TODO: check whether this is necessary
nn.BatchNorm1d(out_channels, eps=1e-3, momentum=0.01),
nn.ReLU(inplace=False))
if init_cfg is None:
self.init_cfg = [
dict(type='Xavier', layer='Conv2d', distribution='uniform'),
dict(type='Xavier', layer='Linear', distribution='uniform')
]
def forward(self, img_feats: List[Tensor], pts: List[Tensor],
pts_feats: Tensor, img_metas: List[dict]) -> Tensor:
"""Forward function.
Args:
img_feats (List[Tensor]): Image features.
pts: (List[Tensor]): A batch of points with shape N x 3.
pts_feats (Tensor): A tensor consist of point features of the
total batch.
img_metas (List[dict]): Meta information of images.
Returns:
Tensor: Fused features of each point.
"""
img_pts = self.obtain_mlvl_feats(img_feats, pts, img_metas)
img_pre_fuse = self.img_transform(img_pts)
if self.training and self.dropout_ratio > 0:
img_pre_fuse = F.dropout(img_pre_fuse, self.dropout_ratio)
pts_pre_fuse = self.pts_transform(pts_feats)
fuse_out = img_pre_fuse + pts_pre_fuse
if self.activate_out:
fuse_out = F.relu(fuse_out)
if self.fuse_out:
fuse_out = self.fuse_conv(fuse_out)
return fuse_out
def obtain_mlvl_feats(self, img_feats: List[Tensor], pts: List[Tensor],
img_metas: List[dict]) -> Tensor:
"""Obtain multi-level features for each point.
Args:
img_feats (List[Tensor]): Multi-scale image features produced
by image backbone in shape (N, C, H, W).
pts (List[Tensor]): Points of each sample.
img_metas (List[dict]): Meta information for each sample.
Returns:
Tensor: Corresponding image features of each point.
"""
if self.lateral_convs is not None:
img_ins = [
lateral_conv(img_feats[i])
for i, lateral_conv in zip(self.img_levels, self.lateral_convs)
]
else:
img_ins = img_feats
img_feats_per_point = []
# Sample multi-level features
for i in range(len(img_metas)):
mlvl_img_feats = []
for level in range(len(self.img_levels)):
mlvl_img_feats.append(
self.sample_single(img_ins[level][i:i + 1], pts[i][:, :3],
img_metas[i]))
mlvl_img_feats = torch.cat(mlvl_img_feats, dim=-1)
img_feats_per_point.append(mlvl_img_feats)
img_pts = torch.cat(img_feats_per_point, dim=0)
return img_pts
def sample_single(self, img_feats: Tensor, pts: Tensor,
img_meta: dict) -> Tensor:
"""Sample features from single level image feature map.
Args:
img_feats (Tensor): Image feature map in shape (1, C, H, W).
pts (Tensor): Points of a single sample.
img_meta (dict): Meta information of the single sample.
Returns:
Tensor: Single level image features of each point.
"""
# TODO: image transformation also extracted
img_scale_factor = (
pts.new_tensor(img_meta['scale_factor'][:2])
if 'scale_factor' in img_meta.keys() else 1)
img_flip = img_meta['flip'] if 'flip' in img_meta.keys() else False
img_crop_offset = (
pts.new_tensor(img_meta['img_crop_offset'])
if 'img_crop_offset' in img_meta.keys() else 0)
proj_mat = get_proj_mat_by_coord_type(img_meta, self.coord_type)
img_pts = point_sample(
img_meta=img_meta,
img_features=img_feats,
points=pts,
proj_mat=pts.new_tensor(proj_mat),
coord_type=self.coord_type,
img_scale_factor=img_scale_factor,
img_crop_offset=img_crop_offset,
img_flip=img_flip,
img_pad_shape=img_meta['input_shape'][:2],
img_shape=img_meta['img_shape'][:2],
aligned=self.aligned,
padding_mode=self.padding_mode,
align_corners=self.align_corners,
)
return img_pts
def voxel_sample(voxel_features: Tensor,
voxel_range: List[float],
voxel_size: List[float],
depth_samples: Tensor,
proj_mat: Tensor,
downsample_factor: int,
img_scale_factor: Tensor,
img_crop_offset: Tensor,
img_flip: bool,
img_pad_shape: Tuple[int],
img_shape: Tuple[int],
aligned: bool = True,
padding_mode: str = 'zeros',
align_corners: bool = True) -> Tensor:
"""Obtain image features using points.
Args:
voxel_features (Tensor): 1 x C x Nx x Ny x Nz voxel features.
voxel_range (List[float]): The range of voxel features.
voxel_size (List[float]): The voxel size of voxel features.
depth_samples (Tensor): N depth samples in LiDAR coordinates.
proj_mat (Tensor): ORIGINAL LiDAR2img projection matrix for N views.
downsample_factor (int): The downsample factor in rescaling.
img_scale_factor (Tensor): Scale factor with shape of
(w_scale, h_scale).
img_crop_offset (Tensor): Crop offset used to crop image during
data augmentation with shape of (w_offset, h_offset).
img_flip (bool): Whether the image is flipped.
img_pad_shape (Tuple[int]): Int tuple indicates the h & w after
padding. This is necessary to obtain features in feature map.
img_shape (Tuple[int]): Int tuple indicates the h & w before padding
after scaling. This is necessary for flipping coordinates.
aligned (bool): Whether to use bilinear interpolation when
sampling image features for each point. Defaults to True.
padding_mode (str): Padding mode when padding values for
features of out-of-image points. Defaults to 'zeros'.
align_corners (bool): Whether to align corners when
sampling image features for each point. Defaults to True.
Returns:
Tensor: 1xCxDxHxW frustum features sampled from voxel features.
"""
# construct frustum grid
device = voxel_features.device
h, w = img_pad_shape
h_out = round(h / downsample_factor)
w_out = round(w / downsample_factor)
ws = (torch.linspace(0, w_out - 1, w_out) * downsample_factor).to(device)
hs = (torch.linspace(0, h_out - 1, h_out) * downsample_factor).to(device)
depths = depth_samples[::downsample_factor]
num_depths = len(depths)
ds_3d, ys_3d, xs_3d = torch.meshgrid(depths, hs, ws)
# grid: (D, H_out, W_out, 3) -> (D*H_out*W_out, 3)
grid = torch.stack([xs_3d, ys_3d, ds_3d], dim=-1).view(-1, 3)
# recover the coordinates in the canonical space
# reverse order of augmentations: flip -> crop -> scale
if img_flip:
# by default we take it as horizontal flip
# use img_shape before padding for flip
ori_h, ori_w = img_shape
grid[:, 0] = ori_w - grid[:, 0]
grid[:, :2] += img_crop_offset
grid[:, :2] /= img_scale_factor
# grid3d: (D*H_out*W_out, 3) in LiDAR coordinate system
grid3d = points_img2cam(grid, proj_mat)
# convert the 3D point coordinates to voxel coordinates
voxel_range = torch.tensor(voxel_range).to(device).view(1, 6)
voxel_size = torch.tensor(voxel_size).to(device).view(1, 3)
# suppose the voxel grid is generated with AlignedAnchorGenerator
# -0.5 given each grid is located at the center of the grid
# TODO: study whether here needs -0.5
grid3d = (grid3d - voxel_range[:, :3]) / voxel_size - 0.5
grid_size = (voxel_range[:, 3:] - voxel_range[:, :3]) / voxel_size
# normalize grid3d to (-1, 1)
grid3d = grid3d / grid_size * 2 - 1
# (x, y, z) -> (z, y, x) for grid_sampling
grid3d = grid3d.view(1, num_depths, h_out, w_out, 3)[..., [2, 1, 0]]
# align_corner=True provides higher performance
mode = 'bilinear' if aligned else 'nearest'
frustum_features = F.grid_sample(
voxel_features,
grid3d,
mode=mode,
padding_mode=padding_mode,
align_corners=align_corners) # 1xCxDxHxW feats
return frustum_features