giantmonkeyTC
mm2
c2ca15f
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmengine.registry import MODELS
from torch import Tensor
from torch import distributed as dist
from torch import nn as nn
from torch.autograd.function import Function
class AllReduce(Function):
@staticmethod
def forward(ctx, input: Tensor) -> Tensor:
input_list = [
torch.zeros_like(input) for k in range(dist.get_world_size())
]
# Use allgather instead of allreduce in-place operations is unreliable
dist.all_gather(input_list, input, async_op=False)
inputs = torch.stack(input_list, dim=0)
return torch.sum(inputs, dim=0)
@staticmethod
def backward(ctx, grad_output: Tensor) -> Tensor:
dist.all_reduce(grad_output, async_op=False)
return grad_output
@MODELS.register_module('naiveSyncBN1d')
class NaiveSyncBatchNorm1d(nn.BatchNorm1d):
"""Synchronized Batch Normalization for 3D Tensors.
Note:
This implementation is modified from
https://github.com/facebookresearch/detectron2/
`torch.nn.SyncBatchNorm` has known unknown bugs.
It produces significantly worse AP (and sometimes goes NaN)
when the batch size on each worker is quite different
(e.g., when scale augmentation is used).
In 3D detection, different workers has points of different shapes,
which also cause instability.
Use this implementation before `nn.SyncBatchNorm` is fixed.
It is slower than `nn.SyncBatchNorm`.
"""
def __init__(self, *args: list, **kwargs: dict) -> None:
super(NaiveSyncBatchNorm1d, self).__init__(*args, **kwargs)
def forward(self, input: Tensor) -> Tensor:
"""
Args:
input (Tensor): Has shape (N, C) or (N, C, L), where N is
the batch size, C is the number of features or
channels, and L is the sequence length
Returns:
Tensor: Has shape (N, C) or (N, C, L), same shape as input.
"""
using_dist = dist.is_available() and dist.is_initialized()
if (not using_dist) or dist.get_world_size() == 1 \
or not self.training:
return super().forward(input)
assert input.shape[0] > 0, 'SyncBN does not support empty inputs'
is_two_dim = input.dim() == 2
if is_two_dim:
input = input.unsqueeze(2)
C = input.shape[1]
mean = torch.mean(input, dim=[0, 2])
meansqr = torch.mean(input * input, dim=[0, 2])
vec = torch.cat([mean, meansqr], dim=0)
vec = AllReduce.apply(vec) * (1.0 / dist.get_world_size())
mean, meansqr = torch.split(vec, C)
var = meansqr - mean * mean
self.running_mean += self.momentum * (
mean.detach() - self.running_mean)
self.running_var += self.momentum * (var.detach() - self.running_var)
invstd = torch.rsqrt(var + self.eps)
scale = self.weight * invstd
bias = self.bias - mean * scale
scale = scale.reshape(1, -1, 1)
bias = bias.reshape(1, -1, 1)
output = input * scale + bias
if is_two_dim:
output = output.squeeze(2)
return output
@MODELS.register_module('naiveSyncBN2d')
class NaiveSyncBatchNorm2d(nn.BatchNorm2d):
"""Synchronized Batch Normalization for 4D Tensors.
Note:
This implementation is modified from
https://github.com/facebookresearch/detectron2/
`torch.nn.SyncBatchNorm` has known unknown bugs.
It produces significantly worse AP (and sometimes goes NaN)
when the batch size on each worker is quite different
(e.g., when scale augmentation is used).
This phenomenon also occurs when the multi-modality feature fusion
modules of multi-modality detectors use SyncBN.
Use this implementation before `nn.SyncBatchNorm` is fixed.
It is slower than `nn.SyncBatchNorm`.
"""
def __init__(self, *args: list, **kwargs: dict) -> None:
super(NaiveSyncBatchNorm2d, self).__init__(*args, **kwargs)
def forward(self, input: Tensor) -> Tensor:
"""
Args:
Input (Tensor): Feature has shape (N, C, H, W).
Returns:
Tensor: Has shape (N, C, H, W), same shape as input.
"""
assert input.dtype == torch.float32, \
f'input should be in float32 type, got {input.dtype}'
using_dist = dist.is_available() and dist.is_initialized()
if (not using_dist) or \
dist.get_world_size() == 1 or \
not self.training:
return super().forward(input)
assert input.shape[0] > 0, 'SyncBN does not support empty inputs'
C = input.shape[1]
mean = torch.mean(input, dim=[0, 2, 3])
meansqr = torch.mean(input * input, dim=[0, 2, 3])
vec = torch.cat([mean, meansqr], dim=0)
vec = AllReduce.apply(vec) * (1.0 / dist.get_world_size())
mean, meansqr = torch.split(vec, C)
var = meansqr - mean * mean
self.running_mean += self.momentum * (
mean.detach() - self.running_mean)
self.running_var += self.momentum * (var.detach() - self.running_var)
invstd = torch.rsqrt(var + self.eps)
scale = self.weight * invstd
bias = self.bias - mean * scale
scale = scale.reshape(1, -1, 1, 1)
bias = bias.reshape(1, -1, 1, 1)
return input * scale + bias