3dtest / tests /test_models /test_backbones /test_pointnet2_sa_ssg.py
giantmonkeyTC
mm2
c2ca15f
# Copyright (c) OpenMMLab. All rights reserved.
import numpy as np
import pytest
import torch
from mmdet3d.registry import MODELS
def test_pointnet2_sa_ssg():
if not torch.cuda.is_available():
pytest.skip()
cfg = dict(
type='PointNet2SASSG',
in_channels=6,
num_points=(32, 16),
radius=(0.8, 1.2),
num_samples=(16, 8),
sa_channels=((8, 16), (16, 16)),
fp_channels=((16, 16), (16, 16)))
self = MODELS.build(cfg)
self.cuda()
assert self.SA_modules[0].mlps[0].layer0.conv.in_channels == 6
assert self.SA_modules[0].mlps[0].layer0.conv.out_channels == 8
assert self.SA_modules[0].mlps[0].layer1.conv.out_channels == 16
assert self.SA_modules[1].mlps[0].layer1.conv.out_channels == 16
assert self.FP_modules[0].mlps.layer0.conv.in_channels == 32
assert self.FP_modules[0].mlps.layer0.conv.out_channels == 16
assert self.FP_modules[1].mlps.layer0.conv.in_channels == 19
xyz = np.fromfile('tests/data/sunrgbd/points/000001.bin', dtype=np.float32)
xyz = torch.from_numpy(xyz).view(1, -1, 6).cuda() # (B, N, 6)
# test forward
ret_dict = self(xyz)
fp_xyz = ret_dict['fp_xyz']
fp_features = ret_dict['fp_features']
fp_indices = ret_dict['fp_indices']
sa_xyz = ret_dict['sa_xyz']
sa_features = ret_dict['sa_features']
sa_indices = ret_dict['sa_indices']
assert len(fp_xyz) == len(fp_features) == len(fp_indices) == 3
assert len(sa_xyz) == len(sa_features) == len(sa_indices) == 3
assert fp_xyz[0].shape == torch.Size([1, 16, 3])
assert fp_xyz[1].shape == torch.Size([1, 32, 3])
assert fp_xyz[2].shape == torch.Size([1, 100, 3])
assert fp_features[0].shape == torch.Size([1, 16, 16])
assert fp_features[1].shape == torch.Size([1, 16, 32])
assert fp_features[2].shape == torch.Size([1, 16, 100])
assert fp_indices[0].shape == torch.Size([1, 16])
assert fp_indices[1].shape == torch.Size([1, 32])
assert fp_indices[2].shape == torch.Size([1, 100])
assert sa_xyz[0].shape == torch.Size([1, 100, 3])
assert sa_xyz[1].shape == torch.Size([1, 32, 3])
assert sa_xyz[2].shape == torch.Size([1, 16, 3])
assert sa_features[0].shape == torch.Size([1, 3, 100])
assert sa_features[1].shape == torch.Size([1, 16, 32])
assert sa_features[2].shape == torch.Size([1, 16, 16])
assert sa_indices[0].shape == torch.Size([1, 100])
assert sa_indices[1].shape == torch.Size([1, 32])
assert sa_indices[2].shape == torch.Size([1, 16])
# test only xyz input without features
cfg['in_channels'] = 3
self = MODELS.build(cfg)
self.cuda()
ret_dict = self(xyz[..., :3])
assert len(fp_xyz) == len(fp_features) == len(fp_indices) == 3
assert len(sa_xyz) == len(sa_features) == len(sa_indices) == 3
assert fp_features[0].shape == torch.Size([1, 16, 16])
assert fp_features[1].shape == torch.Size([1, 16, 32])
assert fp_features[2].shape == torch.Size([1, 16, 100])
assert sa_features[0].shape == torch.Size([1, 3, 100])
assert sa_features[1].shape == torch.Size([1, 16, 32])
assert sa_features[2].shape == torch.Size([1, 16, 16])