|
|
|
import numpy as np |
|
import pytest |
|
import torch |
|
|
|
from mmdet3d.registry import MODELS |
|
|
|
|
|
def test_pointnet2_sa_ssg(): |
|
if not torch.cuda.is_available(): |
|
pytest.skip() |
|
|
|
cfg = dict( |
|
type='PointNet2SASSG', |
|
in_channels=6, |
|
num_points=(32, 16), |
|
radius=(0.8, 1.2), |
|
num_samples=(16, 8), |
|
sa_channels=((8, 16), (16, 16)), |
|
fp_channels=((16, 16), (16, 16))) |
|
self = MODELS.build(cfg) |
|
self.cuda() |
|
assert self.SA_modules[0].mlps[0].layer0.conv.in_channels == 6 |
|
assert self.SA_modules[0].mlps[0].layer0.conv.out_channels == 8 |
|
assert self.SA_modules[0].mlps[0].layer1.conv.out_channels == 16 |
|
assert self.SA_modules[1].mlps[0].layer1.conv.out_channels == 16 |
|
assert self.FP_modules[0].mlps.layer0.conv.in_channels == 32 |
|
assert self.FP_modules[0].mlps.layer0.conv.out_channels == 16 |
|
assert self.FP_modules[1].mlps.layer0.conv.in_channels == 19 |
|
|
|
xyz = np.fromfile('tests/data/sunrgbd/points/000001.bin', dtype=np.float32) |
|
xyz = torch.from_numpy(xyz).view(1, -1, 6).cuda() |
|
|
|
ret_dict = self(xyz) |
|
fp_xyz = ret_dict['fp_xyz'] |
|
fp_features = ret_dict['fp_features'] |
|
fp_indices = ret_dict['fp_indices'] |
|
sa_xyz = ret_dict['sa_xyz'] |
|
sa_features = ret_dict['sa_features'] |
|
sa_indices = ret_dict['sa_indices'] |
|
assert len(fp_xyz) == len(fp_features) == len(fp_indices) == 3 |
|
assert len(sa_xyz) == len(sa_features) == len(sa_indices) == 3 |
|
assert fp_xyz[0].shape == torch.Size([1, 16, 3]) |
|
assert fp_xyz[1].shape == torch.Size([1, 32, 3]) |
|
assert fp_xyz[2].shape == torch.Size([1, 100, 3]) |
|
assert fp_features[0].shape == torch.Size([1, 16, 16]) |
|
assert fp_features[1].shape == torch.Size([1, 16, 32]) |
|
assert fp_features[2].shape == torch.Size([1, 16, 100]) |
|
assert fp_indices[0].shape == torch.Size([1, 16]) |
|
assert fp_indices[1].shape == torch.Size([1, 32]) |
|
assert fp_indices[2].shape == torch.Size([1, 100]) |
|
assert sa_xyz[0].shape == torch.Size([1, 100, 3]) |
|
assert sa_xyz[1].shape == torch.Size([1, 32, 3]) |
|
assert sa_xyz[2].shape == torch.Size([1, 16, 3]) |
|
assert sa_features[0].shape == torch.Size([1, 3, 100]) |
|
assert sa_features[1].shape == torch.Size([1, 16, 32]) |
|
assert sa_features[2].shape == torch.Size([1, 16, 16]) |
|
assert sa_indices[0].shape == torch.Size([1, 100]) |
|
assert sa_indices[1].shape == torch.Size([1, 32]) |
|
assert sa_indices[2].shape == torch.Size([1, 16]) |
|
|
|
|
|
cfg['in_channels'] = 3 |
|
self = MODELS.build(cfg) |
|
self.cuda() |
|
ret_dict = self(xyz[..., :3]) |
|
assert len(fp_xyz) == len(fp_features) == len(fp_indices) == 3 |
|
assert len(sa_xyz) == len(sa_features) == len(sa_indices) == 3 |
|
assert fp_features[0].shape == torch.Size([1, 16, 16]) |
|
assert fp_features[1].shape == torch.Size([1, 16, 32]) |
|
assert fp_features[2].shape == torch.Size([1, 16, 100]) |
|
assert sa_features[0].shape == torch.Size([1, 3, 100]) |
|
assert sa_features[1].shape == torch.Size([1, 16, 32]) |
|
assert sa_features[2].shape == torch.Size([1, 16, 16]) |
|
|