3dtest / tests /test_models /test_losses /test_chamfer_disrance.py
giantmonkeyTC
mm2
c2ca15f
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
def test_chamfer_disrance():
from mmdet3d.models.losses import ChamferDistance, chamfer_distance
with pytest.raises(AssertionError):
# test invalid mode
ChamferDistance(mode='smoothl1')
# test invalid type of reduction
ChamferDistance(mode='l2', reduction=None)
self = ChamferDistance(
mode='l2', reduction='sum', loss_src_weight=1.0, loss_dst_weight=1.0)
source = torch.tensor([[[-0.9888, 0.9683, -0.8494],
[-6.4536, 4.5146,
1.6861], [2.0482, 5.6936, -1.4701],
[-0.5173, 5.6472, 2.1748],
[-2.8010, 5.4423, -1.2158],
[2.4018, 2.4389, -0.2403],
[-2.8811, 3.8486, 1.4750],
[-0.2031, 3.8969,
-1.5245], [1.3827, 4.9295, 1.1537],
[-2.6961, 2.2621, -1.0976]],
[[0.3692, 1.8409,
-1.4983], [1.9995, 6.3602, 0.1798],
[-2.1317, 4.6011,
-0.7028], [2.4158, 3.1482, 0.3169],
[-0.5836, 3.6250, -1.2650],
[-1.9862, 1.6182, -1.4901],
[2.5992, 1.2847, -0.8471],
[-0.3467, 5.3681, -1.4755],
[-0.8576, 3.3400, -1.7399],
[2.7447, 4.6349, 0.1994]]])
target = torch.tensor([[[-0.4758, 1.0094, -0.8645],
[-0.3130, 0.8564, -0.9061],
[-0.1560, 2.0394, -0.8936],
[-0.3685, 1.6467, -0.8271],
[-0.2740, 2.2212, -0.7980]],
[[1.4856, 2.5299,
-1.0047], [2.3262, 3.3065, -0.9475],
[2.4593, 2.5870,
-0.9423], [0.0000, 0.0000, 0.0000],
[0.0000, 0.0000, 0.0000]]])
loss_source, loss_target, indices1, indices2 = self(
source, target, return_indices=True)
assert torch.allclose(loss_source, torch.tensor(219.5936))
assert torch.allclose(loss_target, torch.tensor(22.3705))
expected_inds1 = [[0, 4, 4, 4, 4, 2, 4, 4, 4, 3],
[0, 1, 0, 1, 0, 4, 2, 0, 0, 1]]
expected_inds2 = [[0, 4, 4, 4, 4, 2, 4, 4, 4, 3],
[0, 1, 0, 1, 0, 3, 2, 0, 0, 1]]
assert (torch.equal(indices1, indices1.new_tensor(expected_inds1))
or torch.equal(indices1, indices1.new_tensor(expected_inds2)))
assert torch.equal(indices2,
indices2.new_tensor([[0, 0, 0, 0, 0], [0, 3, 6, 0, 0]]))
loss_source, loss_target, indices1, indices2 = chamfer_distance(
source, target, reduction='sum')
assert torch.allclose(loss_source, torch.tensor(219.5936))
assert torch.allclose(loss_target, torch.tensor(22.3705))
assert (torch.equal(indices1, indices1.new_tensor(expected_inds1))
or torch.equal(indices1, indices1.new_tensor(expected_inds2)))
assert (indices2 == indices2.new_tensor([[0, 0, 0, 0, 0], [0, 3, 6, 0,
0]])).all()