|
|
|
import argparse |
|
import json |
|
from collections import defaultdict |
|
|
|
import numpy as np |
|
import seaborn as sns |
|
from matplotlib import pyplot as plt |
|
|
|
|
|
def cal_train_time(log_dicts, args): |
|
for i, log_dict in enumerate(log_dicts): |
|
print(f'{"-" * 5}Analyze train time of {args.json_logs[i]}{"-" * 5}') |
|
all_times = [] |
|
for epoch in log_dict.keys(): |
|
if args.include_outliers: |
|
all_times.append(log_dict[epoch]['time']) |
|
else: |
|
all_times.append(log_dict[epoch]['time'][1:]) |
|
if not all_times: |
|
raise KeyError( |
|
'Please reduce the log interval in the config so that ' |
|
'interval is less than iterations of one epoch.') |
|
epoch_ave_time = np.array(list(map(lambda x: np.mean(x), all_times))) |
|
slowest_epoch = epoch_ave_time.argmax() |
|
fastest_epoch = epoch_ave_time.argmin() |
|
std_over_epoch = epoch_ave_time.std() |
|
print(f'slowest epoch {slowest_epoch + 1}, ' |
|
f'average time is {epoch_ave_time[slowest_epoch]:.4f} s/iter') |
|
print(f'fastest epoch {fastest_epoch + 1}, ' |
|
f'average time is {epoch_ave_time[fastest_epoch]:.4f} s/iter') |
|
print(f'time std over epochs is {std_over_epoch:.4f}') |
|
print(f'average iter time: {np.mean(epoch_ave_time):.4f} s/iter\n') |
|
|
|
|
|
def plot_curve(log_dicts, args): |
|
if args.backend is not None: |
|
plt.switch_backend(args.backend) |
|
sns.set_style(args.style) |
|
|
|
legend = args.legend |
|
if legend is None: |
|
legend = [] |
|
for json_log in args.json_logs: |
|
for metric in args.keys: |
|
legend.append(f'{json_log}_{metric}') |
|
assert len(legend) == (len(args.json_logs) * len(args.keys)) |
|
metrics = args.keys |
|
|
|
num_metrics = len(metrics) |
|
for i, log_dict in enumerate(log_dicts): |
|
epochs = list(log_dict.keys()) |
|
for j, metric in enumerate(metrics): |
|
print(f'plot curve of {args.json_logs[i]}, metric is {metric}') |
|
if metric not in log_dict[epochs[int(args.eval_interval) - 1]]: |
|
if args.eval: |
|
raise KeyError( |
|
f'{args.json_logs[i]} does not contain metric ' |
|
f'{metric}. Please check if "--no-validate" is ' |
|
'specified when you trained the model. Or check ' |
|
f'if the eval_interval {args.eval_interval} in args ' |
|
'is equal to the `eval_interval` during training.') |
|
raise KeyError( |
|
f'{args.json_logs[i]} does not contain metric {metric}. ' |
|
'Please reduce the log interval in the config so that ' |
|
'interval is less than iterations of one epoch.') |
|
|
|
if args.eval: |
|
xs = [] |
|
ys = [] |
|
for epoch in epochs: |
|
ys += log_dict[epoch][metric] |
|
if log_dict[epoch][metric]: |
|
xs += [epoch] |
|
plt.xlabel('epoch') |
|
plt.plot(xs, ys, label=legend[i * num_metrics + j], marker='o') |
|
else: |
|
xs = [] |
|
ys = [] |
|
for epoch in epochs: |
|
iters = log_dict[epoch]['step'] |
|
xs.append(np.array(iters)) |
|
ys.append(np.array(log_dict[epoch][metric][:len(iters)])) |
|
xs = np.concatenate(xs) |
|
ys = np.concatenate(ys) |
|
plt.xlabel('iter') |
|
plt.plot( |
|
xs, ys, label=legend[i * num_metrics + j], linewidth=0.5) |
|
plt.legend() |
|
if args.title is not None: |
|
plt.title(args.title) |
|
if args.out is None: |
|
plt.show() |
|
else: |
|
print(f'save curve to: {args.out}') |
|
plt.savefig(args.out) |
|
plt.cla() |
|
|
|
|
|
def add_plot_parser(subparsers): |
|
parser_plt = subparsers.add_parser( |
|
'plot_curve', help='parser for plotting curves') |
|
parser_plt.add_argument( |
|
'json_logs', |
|
type=str, |
|
nargs='+', |
|
help='path of train log in json format') |
|
parser_plt.add_argument( |
|
'--keys', |
|
type=str, |
|
nargs='+', |
|
default=['mAP_0.25'], |
|
help='the metric that you want to plot') |
|
parser_plt.add_argument( |
|
'--eval', |
|
action='store_true', |
|
help='whether to plot evaluation metric') |
|
parser_plt.add_argument( |
|
'--eval-interval', |
|
type=str, |
|
default='1', |
|
help='the eval interval when training') |
|
parser_plt.add_argument('--title', type=str, help='title of figure') |
|
parser_plt.add_argument( |
|
'--legend', |
|
type=str, |
|
nargs='+', |
|
default=None, |
|
help='legend of each plot') |
|
parser_plt.add_argument( |
|
'--backend', type=str, default=None, help='backend of plt') |
|
parser_plt.add_argument( |
|
'--style', type=str, default='dark', help='style of plt') |
|
parser_plt.add_argument('--out', type=str, default=None) |
|
|
|
|
|
def add_time_parser(subparsers): |
|
parser_time = subparsers.add_parser( |
|
'cal_train_time', |
|
help='parser for computing the average time per training iteration') |
|
parser_time.add_argument( |
|
'json_logs', |
|
type=str, |
|
nargs='+', |
|
help='path of train log in json format') |
|
parser_time.add_argument( |
|
'--include-outliers', |
|
action='store_true', |
|
help='include the first value of every epoch when computing ' |
|
'the average time') |
|
|
|
|
|
def parse_args(): |
|
parser = argparse.ArgumentParser(description='Analyze Json Log') |
|
|
|
subparsers = parser.add_subparsers(dest='task', help='task parser') |
|
add_plot_parser(subparsers) |
|
add_time_parser(subparsers) |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def load_json_logs(json_logs): |
|
|
|
|
|
|
|
log_dicts = [dict() for _ in json_logs] |
|
for json_log, log_dict in zip(json_logs, log_dicts): |
|
with open(json_log, 'r') as log_file: |
|
epoch = 1 |
|
for i, line in enumerate(log_file): |
|
log = json.loads(line.strip()) |
|
val_flag = False |
|
|
|
if not len(log) > 1: |
|
continue |
|
|
|
if epoch not in log_dict: |
|
log_dict[epoch] = defaultdict(list) |
|
|
|
for k, v in log.items(): |
|
if '/' in k: |
|
log_dict[epoch][k.split('/')[-1]].append(v) |
|
val_flag = True |
|
elif val_flag: |
|
continue |
|
else: |
|
log_dict[epoch][k].append(v) |
|
|
|
if 'epoch' in log.keys(): |
|
epoch = log['epoch'] |
|
|
|
return log_dicts |
|
|
|
|
|
def main(): |
|
args = parse_args() |
|
|
|
json_logs = args.json_logs |
|
for json_log in json_logs: |
|
assert json_log.endswith('.json') |
|
|
|
log_dicts = load_json_logs(json_logs) |
|
|
|
eval(args.task)(log_dicts, args) |
|
|
|
|
|
if __name__ == '__main__': |
|
main() |
|
|