|
from argparse import ArgumentParser |
|
|
|
import numpy as np |
|
import requests |
|
|
|
from mmdet3d.apis import inference_detector, init_model |
|
|
|
|
|
def parse_args(): |
|
parser = ArgumentParser() |
|
parser.add_argument('pcd', help='Point cloud file') |
|
parser.add_argument('config', help='Config file') |
|
parser.add_argument('checkpoint', help='Checkpoint file') |
|
parser.add_argument('model_name', help='The model name in the server') |
|
parser.add_argument( |
|
'--inference-addr', |
|
default='127.0.0.1:8080', |
|
help='Address and port of the inference server') |
|
parser.add_argument( |
|
'--device', default='cuda:0', help='Device used for inference') |
|
parser.add_argument( |
|
'--score-thr', type=float, default=0.5, help='3d bbox score threshold') |
|
args = parser.parse_args() |
|
return args |
|
|
|
|
|
def parse_result(input): |
|
bbox = input[0]['3dbbox'] |
|
result = np.array(bbox) |
|
return result |
|
|
|
|
|
def main(args): |
|
|
|
model = init_model(args.config, args.checkpoint, device=args.device) |
|
|
|
model_result, _ = inference_detector(model, args.pcd) |
|
|
|
if 'pts_bbox' in model_result[0].keys(): |
|
pred_bboxes = model_result[0]['pts_bbox']['boxes_3d'].numpy() |
|
pred_scores = model_result[0]['pts_bbox']['scores_3d'].numpy() |
|
else: |
|
pred_bboxes = model_result[0]['boxes_3d'].numpy() |
|
pred_scores = model_result[0]['scores_3d'].numpy() |
|
model_result = pred_bboxes[pred_scores > 0.5] |
|
|
|
url = 'http://' + args.inference_addr + '/predictions/' + args.model_name |
|
with open(args.pcd, 'rb') as points: |
|
response = requests.post(url, points) |
|
server_result = parse_result(response.json()) |
|
assert np.allclose(model_result, server_result) |
|
|
|
|
|
if __name__ == '__main__': |
|
args = parse_args() |
|
main(args) |
|
|