_base_ = [ '../_base_/schedules/mmdet-schedule-1x.py', '../_base_/default_runtime.py' ] model = dict( type='ImVoxelNet', data_preprocessor=dict( type='Det3DDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32), backbone=dict( type='mmdet.ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'), style='pytorch'), neck=dict( type='mmdet.FPN', in_channels=[256, 512, 1024, 2048], out_channels=64, num_outs=4), neck_3d=dict(type='OutdoorImVoxelNeck', in_channels=64, out_channels=256), bbox_head=dict( type='Anchor3DHead', num_classes=1, in_channels=256, feat_channels=256, use_direction_classifier=True, anchor_generator=dict( type='AlignedAnchor3DRangeGenerator', ranges=[[-0.16, -39.68, -1.78, 68.96, 39.68, -1.78]], sizes=[[3.9, 1.6, 1.56]], rotations=[0, 1.57], reshape_out=True), diff_rad_by_sin=True, bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'), loss_cls=dict( type='mmdet.FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict( type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0), loss_dir=dict( type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)), n_voxels=[216, 248, 12], coord_type='LIDAR', prior_generator=dict( type='AlignedAnchor3DRangeGenerator', ranges=[[-0.16, -39.68, -3.08, 68.96, 39.68, 0.76]], rotations=[.0]), train_cfg=dict( assigner=dict( type='Max3DIoUAssigner', iou_calculator=dict(type='mmdet3d.BboxOverlapsNearest3D'), pos_iou_thr=0.6, neg_iou_thr=0.45, min_pos_iou=0.45, ignore_iof_thr=-1), allowed_border=0, pos_weight=-1, debug=False), test_cfg=dict( use_rotate_nms=True, nms_across_levels=False, nms_thr=0.01, score_thr=0.1, min_bbox_size=0, nms_pre=100, max_num=50)) dataset_type = 'KittiDataset' data_root = 'data/kitti/' class_names = ['Car'] input_modality = dict(use_lidar=False, use_camera=True) point_cloud_range = [0, -39.68, -3, 69.12, 39.68, 1] metainfo = dict(classes=class_names) backend_args = None train_pipeline = [ dict(type='LoadAnnotations3D', backend_args=backend_args), dict(type='LoadImageFromFileMono3D', backend_args=backend_args), dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), dict( type='RandomResize', scale=[(1173, 352), (1387, 416)], keep_ratio=True), dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), dict(type='Pack3DDetInputs', keys=['img', 'gt_bboxes_3d', 'gt_labels_3d']) ] test_pipeline = [ dict(type='LoadImageFromFileMono3D', backend_args=backend_args), dict(type='Resize', scale=(1280, 384), keep_ratio=True), dict(type='Pack3DDetInputs', keys=['img']) ] train_dataloader = dict( batch_size=4, num_workers=4, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type='RepeatDataset', times=3, dataset=dict( type=dataset_type, data_root=data_root, ann_file='kitti_infos_train.pkl', data_prefix=dict(img='training/image_2'), pipeline=train_pipeline, modality=input_modality, test_mode=False, metainfo=metainfo, box_type_3d='LiDAR', backend_args=backend_args))) val_dataloader = dict( batch_size=1, num_workers=1, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='kitti_infos_val.pkl', data_prefix=dict(img='training/image_2'), pipeline=test_pipeline, modality=input_modality, test_mode=True, metainfo=metainfo, box_type_3d='LiDAR', backend_args=backend_args)) test_dataloader = val_dataloader val_evaluator = dict( type='KittiMetric', ann_file=data_root + 'kitti_infos_val.pkl', metric='bbox', backend_args=backend_args) test_evaluator = val_evaluator # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict( _delete_=True, type='AdamW', lr=0.0001, weight_decay=0.0001), paramwise_cfg=dict( custom_keys={'backbone': dict(lr_mult=0.1, decay_mult=1.0)}), clip_grad=dict(max_norm=35., norm_type=2)) param_scheduler = [ dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[8, 11], gamma=0.1) ] # hooks default_hooks = dict(checkpoint=dict(type='CheckpointHook', max_keep_ckpts=1)) # runtime find_unused_parameters = True # only 1 of 4 FPN outputs is used vis_backends = [dict(type='LocalVisBackend')] visualizer = dict( type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer')