_base_ = [ '../_base_/models/mask-rcnn_r50_fpn.py', '../_base_/datasets/nuim-instance.py', '../_base_/schedules/mmdet-schedule-1x.py', '../_base_/default_runtime.py' ] model = dict( pretrained='open-mmlab://detectron2/resnet50_caffe', backbone=dict(norm_cfg=dict(requires_grad=False), style='caffe'), roi_head=dict( bbox_head=dict(num_classes=10), mask_head=dict(num_classes=10))) backend_args = None train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='LoadAnnotations', with_bbox=True, with_mask=True), dict( type='Resize', img_scale=[(1280, 720), (1920, 1080)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='PackDetInputs'), ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict( type='MultiScaleFlipAug', img_scale=(1600, 900), flip=False, transforms=[ dict(type='Resize', keep_ratio=True), dict(type='RandomFlip'), ]), dict( type='PackDetInputs', meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')), ] data = dict( train=dict(pipeline=train_pipeline), val=dict(pipeline=test_pipeline), test=dict(pipeline=test_pipeline)) load_from = 'https://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth' # noqa