_base_ = [ '../_base_/datasets/kitti-mono3d.py', '../_base_/models/smoke.py', '../_base_/default_runtime.py' ] backend_args = None train_pipeline = [ dict(type='LoadImageFromFileMono3D', backend_args=backend_args), dict( type='LoadAnnotations3D', with_bbox=True, with_label=True, with_attr_label=False, with_bbox_3d=True, with_label_3d=True, with_bbox_depth=True), dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), dict(type='RandomShiftScale', shift_scale=(0.2, 0.4), aug_prob=0.3), dict(type='AffineResize', img_scale=(1280, 384), down_ratio=4), dict( type='Pack3DDetInputs', keys=[ 'img', 'gt_bboxes', 'gt_bboxes_labels', 'gt_bboxes_3d', 'gt_labels_3d', 'centers_2d', 'depths' ]), ] test_pipeline = [ dict(type='LoadImageFromFileMono3D', backend_args=backend_args), dict(type='AffineResize', img_scale=(1280, 384), down_ratio=4), dict(type='Pack3DDetInputs', keys=['img']) ] train_dataloader = dict( batch_size=8, num_workers=4, dataset=dict(pipeline=train_pipeline)) test_dataloader = dict(dataset=dict(pipeline=test_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) # training schedule for 6x max_epochs = 72 train_cfg = dict( type='EpochBasedTrainLoop', max_epochs=max_epochs, val_interval=5) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate param_scheduler = [ dict( type='MultiStepLR', begin=0, end=max_epochs, by_epoch=True, milestones=[50], gamma=0.1) ] # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='Adam', lr=2.5e-4), clip_grad=None) find_unused_parameters = True