_base_ = [ '../_base_/datasets/scannet-3d.py', '../_base_/models/votenet.py', '../_base_/schedules/schedule-3x.py', '../_base_/default_runtime.py' ] # model settings model = dict( bbox_head=dict( num_classes=18, bbox_coder=dict( type='PartialBinBasedBBoxCoder', num_sizes=18, num_dir_bins=1, with_rot=False, mean_sizes=[[0.76966727, 0.8116021, 0.92573744], [1.876858, 1.8425595, 1.1931566], [0.61328, 0.6148609, 0.7182701], [1.3955007, 1.5121545, 0.83443564], [0.97949594, 1.0675149, 0.6329687], [0.531663, 0.5955577, 1.7500148], [0.9624706, 0.72462326, 1.1481868], [0.83221924, 1.0490936, 1.6875663], [0.21132214, 0.4206159, 0.5372846], [1.4440073, 1.8970833, 0.26985747], [1.0294262, 1.4040797, 0.87554324], [1.3766412, 0.65521795, 1.6813129], [0.6650819, 0.71111923, 1.298853], [0.41999173, 0.37906948, 1.7513971], [0.59359556, 0.5912492, 0.73919016], [0.50867593, 0.50656086, 0.30136237], [1.1511526, 1.0546296, 0.49706793], [0.47535285, 0.49249494, 0.5802117]]))) default_hooks = dict(logger=dict(type='LoggerHook', interval=30)) # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (8 GPUs) x (8 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=64)