# If point cloud range is changed, the models should also change their point # cloud range accordingly point_cloud_range = [-50, -50, -5, 50, 50, 3] # Using calibration info convert the Lidar-coordinate point cloud range to the # ego-coordinate point cloud range could bring a little promotion in nuScenes. # point_cloud_range = [-50, -50.8, -5, 50, 49.2, 3] # For nuScenes we usually do 10-class detection class_names = [ 'car', 'truck', 'trailer', 'bus', 'construction_vehicle', 'bicycle', 'motorcycle', 'pedestrian', 'traffic_cone', 'barrier' ] metainfo = dict(classes=class_names) dataset_type = 'NuScenesDataset' data_root = 'data/nuscenes/' # Input modality for nuScenes dataset, this is consistent with the submission # format which requires the information in input_modality. input_modality = dict(use_lidar=True, use_camera=False) data_prefix = dict(pts='samples/LIDAR_TOP', img='', sweeps='sweeps/LIDAR_TOP') # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) # data_root = 's3://openmmlab/datasets/detection3d/nuscenes/' # Method 2: Use backend_args, file_client_args in versions before 1.1.0 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection3d/', # 'data/': 's3://openmmlab/datasets/detection3d/' # })) backend_args = None train_pipeline = [ dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5, backend_args=backend_args), dict( type='LoadPointsFromMultiSweeps', sweeps_num=10, backend_args=backend_args), dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), dict( type='GlobalRotScaleTrans', rot_range=[-0.3925, 0.3925], scale_ratio_range=[0.95, 1.05], translation_std=[0, 0, 0]), dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectNameFilter', classes=class_names), dict(type='PointShuffle'), dict( type='Pack3DDetInputs', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) ] test_pipeline = [ dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5, backend_args=backend_args), dict( type='LoadPointsFromMultiSweeps', sweeps_num=10, test_mode=True, backend_args=backend_args), dict( type='MultiScaleFlipAug3D', img_scale=(1333, 800), pts_scale_ratio=1, flip=False, transforms=[ dict( type='GlobalRotScaleTrans', rot_range=[0, 0], scale_ratio_range=[1., 1.], translation_std=[0, 0, 0]), dict(type='RandomFlip3D'), dict( type='PointsRangeFilter', point_cloud_range=point_cloud_range) ]), dict(type='Pack3DDetInputs', keys=['points']) ] # construct a pipeline for data and gt loading in show function # please keep its loading function consistent with test_pipeline (e.g. client) eval_pipeline = [ dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5, backend_args=backend_args), dict( type='LoadPointsFromMultiSweeps', sweeps_num=10, test_mode=True, backend_args=backend_args), dict(type='Pack3DDetInputs', keys=['points']) ] train_dataloader = dict( batch_size=4, num_workers=4, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type=dataset_type, data_root=data_root, ann_file='nuscenes_infos_train.pkl', pipeline=train_pipeline, metainfo=metainfo, modality=input_modality, test_mode=False, data_prefix=data_prefix, # we use box_type_3d='LiDAR' in kitti and nuscenes dataset # and box_type_3d='Depth' in sunrgbd and scannet dataset. box_type_3d='LiDAR', backend_args=backend_args)) test_dataloader = dict( batch_size=1, num_workers=1, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='nuscenes_infos_val.pkl', pipeline=test_pipeline, metainfo=metainfo, modality=input_modality, data_prefix=data_prefix, test_mode=True, box_type_3d='LiDAR', backend_args=backend_args)) val_dataloader = dict( batch_size=1, num_workers=1, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='nuscenes_infos_val.pkl', pipeline=test_pipeline, metainfo=metainfo, modality=input_modality, test_mode=True, data_prefix=data_prefix, box_type_3d='LiDAR', backend_args=backend_args)) val_evaluator = dict( type='NuScenesMetric', data_root=data_root, ann_file=data_root + 'nuscenes_infos_val.pkl', metric='bbox', backend_args=backend_args) test_evaluator = val_evaluator vis_backends = [dict(type='LocalVisBackend')] visualizer = dict( type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer')