# model settings voxel_size = [0.16, 0.16, 4] point_cloud_range = [0, -39.68, -3, 69.12, 39.68, 1] model = dict( type='VoxelNet', data_preprocessor=dict( type='Det3DDataPreprocessor', voxel=True, voxel_layer=dict( max_num_points=64, point_cloud_range=point_cloud_range, voxel_size=voxel_size, max_voxels=(12000, 20000))), voxel_encoder=dict( type='PillarFeatureNet', in_channels=4, feat_channels=[64], with_distance=False, voxel_size=voxel_size, point_cloud_range=point_cloud_range), middle_encoder=dict( type='PointPillarsScatter', in_channels=64, output_shape=[496, 432]), backbone=dict( type='SECOND', in_channels=64, layer_nums=[3, 5, 5], layer_strides=[2, 2, 2], out_channels=[64, 128, 256]), neck=dict( type='SECONDFPN', in_channels=[64, 128, 256], upsample_strides=[1, 2, 4], out_channels=[128, 128, 128]), bbox_head=dict( type='Anchor3DHead', num_classes=1, in_channels=384, feat_channels=384, use_direction_classifier=True, anchor_generator=dict( type='Anchor3DRangeGenerator', ranges=[[0, -39.68, -1.78, 69.12, 39.68, -1.78]], sizes=[[3.9, 1.6, 1.56]], rotations=[0, 1.57], reshape_out=True), diff_rad_by_sin=True, bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'), loss_cls=dict( type='mmdet.FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict( type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0), loss_dir=dict( type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)), # model training and testing settings train_cfg=dict( assigner=dict( type='Max3DIoUAssigner', iou_calculator=dict(type='BboxOverlapsNearest3D'), pos_iou_thr=0.6, neg_iou_thr=0.45, min_pos_iou=0.45, ignore_iof_thr=-1), allowed_border=0, pos_weight=-1, debug=False), test_cfg=dict( use_rotate_nms=True, nms_across_levels=False, nms_thr=0.01, score_thr=0.1, min_bbox_size=0, nms_pre=100, max_num=50)) # dataset settings dataset_type = 'KittiDataset' data_root = 'data/kitti/' class_names = ['Car'] metainfo = dict(classes=class_names) input_modality = dict(use_lidar=True, use_camera=False) db_sampler = dict( data_root=data_root, info_path=data_root + 'kitti_dbinfos_train.pkl', rate=1.0, prepare=dict(filter_by_difficulty=[-1], filter_by_min_points=dict(Car=5)), sample_groups=dict(Car=15), classes=class_names) train_pipeline = [ dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), dict(type='ObjectSample', db_sampler=db_sampler), dict( type='ObjectNoise', num_try=100, translation_std=[0.25, 0.25, 0.25], global_rot_range=[0.0, 0.0], rot_range=[-0.15707963267, 0.15707963267]), dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), dict( type='GlobalRotScaleTrans', rot_range=[-0.78539816, 0.78539816], scale_ratio_range=[0.95, 1.05]), dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), dict(type='PointShuffle'), dict( type='Pack3DDetInputs', keys=['points', 'gt_labels_3d', 'gt_bboxes_3d']) ] test_pipeline = [ dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict(type='Pack3DDetInputs', keys=['points']) ] # construct a pipeline for data and gt loading in show function # please keep its loading function consistent with test_pipeline (e.g. client) eval_pipeline = [ dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), dict(type='Pack3DDetInputs', keys=['points']) ] train_dataloader = dict( batch_size=3, num_workers=3, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type='RepeatDataset', times=2, dataset=dict( type=dataset_type, data_root=data_root, ann_file='kitti_infos_train.pkl', data_prefix=dict(pts='training/velodyne_reduced'), pipeline=train_pipeline, modality=input_modality, test_mode=False, metainfo=metainfo, # we use box_type_3d='LiDAR' in kitti and nuscenes dataset # and box_type_3d='Depth' in sunrgbd and scannet dataset. box_type_3d='LiDAR'))) val_dataloader = dict( batch_size=1, num_workers=1, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, data_prefix=dict(pts='training/velodyne_reduced'), ann_file='kitti_infos_val.pkl', pipeline=test_pipeline, modality=input_modality, test_mode=True, metainfo=metainfo, box_type_3d='LiDAR')) test_dataloader = val_dataloader val_evaluator = dict( type='KittiMetric', ann_file=data_root + 'kitti_infos_val.pkl', metric='bbox') test_evaluator = val_evaluator # optimizer lr = 0.001 # max learning rate epoch_num = 50 optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='AdamW', lr=lr, betas=(0.95, 0.99), weight_decay=0.01), clip_grad=dict(max_norm=10, norm_type=2)) # learning policy param_scheduler = [ dict( type='CosineAnnealingLR', T_max=epoch_num * 0.4, eta_min=lr * 10, begin=0, end=epoch_num * 0.4, by_epoch=True, convert_to_iter_based=True), dict( type='CosineAnnealingLR', T_max=epoch_num * 0.6, eta_min=lr * 1e-4, begin=epoch_num * 0.4, end=epoch_num * 1, by_epoch=True, convert_to_iter_based=True), dict( type='CosineAnnealingMomentum', T_max=epoch_num * 0.4, eta_min=0.85 / 0.95, begin=0, end=epoch_num * 0.4, by_epoch=True, convert_to_iter_based=True), dict( type='CosineAnnealingMomentum', T_max=epoch_num * 0.6, eta_min=1, begin=epoch_num * 0.4, end=epoch_num * 1, convert_to_iter_based=True) ] train_cfg = dict(by_epoch=True, max_epochs=epoch_num, val_interval=50) val_cfg = dict() test_cfg = dict() auto_scale_lr = dict(enable=False, base_batch_size=24) default_scope = 'mmdet3d' default_hooks = dict( timer=dict(type='IterTimerHook'), logger=dict(type='LoggerHook', interval=50), param_scheduler=dict(type='ParamSchedulerHook'), checkpoint=dict(type='CheckpointHook', interval=1), sampler_seed=dict(type='DistSamplerSeedHook'), visualization=dict(type='Det3DVisualizationHook')) custom_hooks = [ dict(type='BenchmarkHook'), ] env_cfg = dict( cudnn_benchmark=False, mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), dist_cfg=dict(backend='nccl'), ) vis_backends = [dict(type='LocalVisBackend')] visualizer = dict( type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer') log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True) log_level = 'INFO' load_from = None resume = False work_dir = './work_dirs/pp_secfpn_100e'