# model settings point_cloud_range = [0, -39.68, -3, 69.12, 39.68, 1] voxel_size = [0.16, 0.16, 4] model = dict( type='VoxelNet', data_preprocessor=dict( type='Det3DDataPreprocessor', voxel=True, voxel_layer=dict( max_num_points=32, # max_points_per_voxel point_cloud_range=point_cloud_range, voxel_size=voxel_size, max_voxels=(16000, 40000))), voxel_encoder=dict( type='PillarFeatureNet', in_channels=4, feat_channels=[64], with_distance=False, voxel_size=voxel_size, point_cloud_range=point_cloud_range, ), middle_encoder=dict( type='PointPillarsScatter', in_channels=64, output_shape=[496, 432], ), backbone=dict( type='SECOND', in_channels=64, layer_nums=[3, 5, 5], layer_strides=[2, 2, 2], out_channels=[64, 128, 256], ), neck=dict( type='SECONDFPN', in_channels=[64, 128, 256], upsample_strides=[1, 2, 4], out_channels=[128, 128, 128], ), bbox_head=dict( type='Anchor3DHead', num_classes=3, in_channels=384, feat_channels=384, use_direction_classifier=True, anchor_generator=dict( type='Anchor3DRangeGenerator', ranges=[ [0, -40.0, -0.6, 70.4, 40.0, -0.6], [0, -40.0, -0.6, 70.4, 40.0, -0.6], [0, -40.0, -1.78, 70.4, 40.0, -1.78], ], sizes=[[0.8, 0.6, 1.73], [1.76, 0.6, 1.73], [3.9, 1.6, 1.56]], rotations=[0, 1.57], reshape_out=False), diff_rad_by_sin=True, bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder'), loss_cls=dict( type='mmdet.FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict( type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=2.0), loss_dir=dict( type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2), ), # model training and testing settings train_cfg=dict( assigner=[ dict( # for Pedestrian type='Max3DIoUAssigner', iou_calculator=dict(type='BboxOverlapsNearest3D'), pos_iou_thr=0.5, neg_iou_thr=0.35, min_pos_iou=0.35, ignore_iof_thr=-1), dict( # for Cyclist type='Max3DIoUAssigner', iou_calculator=dict(type='BboxOverlapsNearest3D'), pos_iou_thr=0.5, neg_iou_thr=0.35, min_pos_iou=0.35, ignore_iof_thr=-1), dict( # for Car type='Max3DIoUAssigner', iou_calculator=dict(type='BboxOverlapsNearest3D'), pos_iou_thr=0.6, neg_iou_thr=0.45, min_pos_iou=0.45, ignore_iof_thr=-1), ], allowed_border=0, pos_weight=-1, debug=False), test_cfg=dict( use_rotate_nms=True, nms_across_levels=False, nms_thr=0.01, score_thr=0.1, min_bbox_size=0, nms_pre=100, max_num=50)) # dataset settings dataset_type = 'KittiDataset' data_root = 'data/kitti/' class_names = ['Pedestrian', 'Cyclist', 'Car'] metainfo = dict(classes=class_names) input_modality = dict(use_lidar=True, use_camera=False) db_sampler = dict( data_root=data_root, info_path=data_root + 'kitti_dbinfos_train.pkl', rate=1.0, prepare=dict( filter_by_difficulty=[-1], filter_by_min_points=dict( Car=5, Pedestrian=5, Cyclist=5, )), classes=class_names, sample_groups=dict( Car=15, Pedestrian=15, Cyclist=15, )) train_pipeline = [ dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), dict(type='ObjectSample', db_sampler=db_sampler), dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), dict( type='GlobalRotScaleTrans', rot_range=[-0.78539816, 0.78539816], scale_ratio_range=[0.95, 1.05]), dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), dict(type='PointShuffle'), dict( type='Pack3DDetInputs', keys=['points', 'gt_labels_3d', 'gt_bboxes_3d']) ] test_pipeline = [ dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), dict( type='MultiScaleFlipAug3D', img_scale=(1333, 800), pts_scale_ratio=1, flip=False, transforms=[ dict( type='GlobalRotScaleTrans', rot_range=[0, 0], scale_ratio_range=[1., 1.], translation_std=[0, 0, 0]), dict(type='RandomFlip3D'), dict( type='PointsRangeFilter', point_cloud_range=point_cloud_range), ]), dict(type='Pack3DDetInputs', keys=['points']) ] # construct a pipeline for data and gt loading in show function # please keep its loading function consistent with test_pipeline (e.g. client) eval_pipeline = [ dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), dict(type='Pack3DDetInputs', keys=['points']) ] train_dataloader = dict( batch_size=4, num_workers=4, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type=dataset_type, data_root=data_root, ann_file='kitti_infos_train.pkl', data_prefix=dict(pts='training/velodyne_reduced'), pipeline=train_pipeline, modality=input_modality, test_mode=False, metainfo=metainfo, # we use box_type_3d='LiDAR' in kitti and nuscenes dataset # and box_type_3d='Depth' in sunrgbd and scannet dataset. box_type_3d='LiDAR')) val_dataloader = dict( batch_size=1, num_workers=1, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, data_prefix=dict(pts='training/velodyne_reduced'), ann_file='kitti_infos_val.pkl', pipeline=test_pipeline, modality=input_modality, test_mode=True, metainfo=metainfo, box_type_3d='LiDAR')) test_dataloader = val_dataloader val_evaluator = dict( type='KittiMetric', ann_file=data_root + 'kitti_infos_val.pkl', metric='bbox') test_evaluator = val_evaluator # optimizer lr = 0.0003 # max learning rate epoch_num = 80 optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='AdamW', lr=lr, betas=(0.95, 0.99), weight_decay=0.01), clip_grad=dict(max_norm=10, norm_type=2)) # learning policy param_scheduler = [ dict( type='CosineAnnealingLR', T_max=epoch_num * 0.4, eta_min=lr * 10, begin=0, end=epoch_num * 0.4, by_epoch=True, convert_to_iter_based=True), dict( type='CosineAnnealingLR', T_max=epoch_num * 0.6, eta_min=lr * 1e-4, begin=epoch_num * 0.4, end=epoch_num * 1, by_epoch=True, convert_to_iter_based=True), dict( type='CosineAnnealingMomentum', T_max=epoch_num * 0.4, eta_min=0.85 / 0.95, begin=0, end=epoch_num * 0.4, by_epoch=True, convert_to_iter_based=True), dict( type='CosineAnnealingMomentum', T_max=epoch_num * 0.6, eta_min=1, begin=epoch_num * 0.4, end=epoch_num * 1, convert_to_iter_based=True) ] train_cfg = dict(by_epoch=True, max_epochs=epoch_num, val_interval=50) val_cfg = dict() test_cfg = dict() auto_scale_lr = dict(enable=False, base_batch_size=32) default_scope = 'mmdet3d' default_hooks = dict( timer=dict(type='IterTimerHook'), logger=dict(type='LoggerHook', interval=50), param_scheduler=dict(type='ParamSchedulerHook'), checkpoint=dict(type='CheckpointHook', interval=1), sampler_seed=dict(type='DistSamplerSeedHook'), visualization=dict(type='Det3DVisualizationHook')) custom_hooks = [ dict(type='BenchmarkHook'), ] env_cfg = dict( cudnn_benchmark=False, mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0), dist_cfg=dict(backend='nccl'), ) vis_backends = [dict(type='LocalVisBackend')] visualizer = dict( type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer') log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True) log_level = 'INFO' load_from = None resume = False work_dir = './work_dirs/pp_secfpn_80e'