_base_ = [ '../_base_/datasets/nus-mono3d.py', '../_base_/models/pgd.py', '../_base_/schedules/mmdet-schedule-1x.py', '../_base_/default_runtime.py' ] # model settings model = dict( data_preprocessor=dict( type='Det3DDataPreprocessor', mean=[103.530, 116.280, 123.675], std=[1.0, 1.0, 1.0], bgr_to_rgb=False, pad_size_divisor=32), backbone=dict( dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False), stage_with_dcn=(False, False, True, True)), bbox_head=dict( pred_bbox2d=True, group_reg_dims=(2, 1, 3, 1, 2, 4), # offset, depth, size, rot, velo, bbox2d reg_branch=( (256, ), # offset (256, ), # depth (256, ), # size (256, ), # rot (), # velo (256, ) # bbox2d ), loss_depth=dict( type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), bbox_coder=dict( type='PGDBBoxCoder', base_depths=((31.99, 21.12), (37.15, 24.63), (39.69, 23.97), (40.91, 26.34), (34.16, 20.11), (22.35, 13.70), (24.28, 16.05), (27.26, 15.50), (20.61, 13.68), (22.74, 15.01)), base_dims=((4.62, 1.73, 1.96), (6.93, 2.83, 2.51), (12.56, 3.89, 2.94), (11.22, 3.50, 2.95), (6.68, 3.21, 2.85), (6.68, 3.21, 2.85), (2.11, 1.46, 0.78), (0.73, 1.77, 0.67), (0.41, 1.08, 0.41), (0.50, 0.99, 2.52)), code_size=9)), # set weight 1.0 for base 7 dims (offset, depth, size, rot) # 0.05 for 2-dim velocity and 0.2 for 4-dim 2D distance targets train_cfg=dict(code_weight=[ 1.0, 1.0, 0.2, 1.0, 1.0, 1.0, 1.0, 0.05, 0.05, 0.2, 0.2, 0.2, 0.2 ]), test_cfg=dict(nms_pre=1000, nms_thr=0.8, score_thr=0.01, max_per_img=200)) backend_args = None train_pipeline = [ dict(type='LoadImageFromFileMono3D', backend_args=backend_args), dict( type='LoadAnnotations3D', with_bbox=True, with_label=True, with_attr_label=True, with_bbox_3d=True, with_label_3d=True, with_bbox_depth=True), dict(type='mmdet.Resize', scale=(1600, 900), keep_ratio=True), dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), dict( type='Pack3DDetInputs', keys=[ 'img', 'gt_bboxes', 'gt_bboxes_labels', 'attr_labels', 'gt_bboxes_3d', 'gt_labels_3d', 'centers_2d', 'depths' ]), ] test_pipeline = [ dict(type='LoadImageFromFileMono3D', backend_args=backend_args), dict(type='mmdet.Resize', scale_factor=1.0), dict(type='Pack3DDetInputs', keys=['img']), ] train_dataloader = dict( batch_size=2, num_workers=2, dataset=dict(pipeline=train_pipeline)) test_dataloader = dict(dataset=dict(pipeline=test_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) # optimizer optim_wrapper = dict( optimizer=dict(lr=0.004), paramwise_cfg=dict(bias_lr_mult=2., bias_decay_mult=0.), clip_grad=dict(max_norm=35, norm_type=2)) # learning policy param_scheduler = [ dict( type='LinearLR', start_factor=1.0 / 3, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[8, 11], gamma=0.1) ] train_cfg = dict(max_epochs=12, val_interval=4) auto_scale_lr = dict(base_batch_size=32)