_base_ = [ '../_base_/models/pointpillars_hv_fpn_lyft.py', '../_base_/datasets/lyft-3d.py', '../_base_/schedules/schedule-2x.py', '../_base_/default_runtime.py', ] point_cloud_range = [-100, -100, -5, 100, 100, 3] # Note that the order of class names should be consistent with # the following anchors' order class_names = [ 'bicycle', 'motorcycle', 'pedestrian', 'animal', 'car', 'emergency_vehicle', 'bus', 'other_vehicle', 'truck' ] backend_args = None train_pipeline = [ dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5, backend_args=backend_args), dict( type='LoadPointsFromMultiSweeps', sweeps_num=10, backend_args=backend_args), dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), dict( type='GlobalRotScaleTrans', rot_range=[-0.3925, 0.3925], scale_ratio_range=[0.95, 1.05], translation_std=[0, 0, 0]), dict( type='RandomFlip3D', sync_2d=False, flip_ratio_bev_horizontal=0.5, flip_ratio_bev_vertical=0.5), dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), dict(type='PointShuffle'), dict( type='Pack3DDetInputs', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) ] test_pipeline = [ dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=5, use_dim=5, backend_args=backend_args), dict( type='LoadPointsFromMultiSweeps', sweeps_num=10, backend_args=backend_args), dict( type='MultiScaleFlipAug3D', img_scale=(1333, 800), pts_scale_ratio=1, flip=False, transforms=[ dict( type='GlobalRotScaleTrans', rot_range=[0, 0], scale_ratio_range=[1., 1.], translation_std=[0, 0, 0]), dict(type='RandomFlip3D'), dict( type='PointsRangeFilter', point_cloud_range=point_cloud_range) ]), dict(type='Pack3DDetInputs', keys=['points']) ] train_dataloader = dict( batch_size=2, num_workers=4, dataset=dict(pipeline=train_pipeline)) test_dataloader = dict(dataset=dict(pipeline=test_pipeline)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) # model settings model = dict( data_preprocessor=dict( voxel_layer=dict(point_cloud_range=[-100, -100, -5, 100, 100, 3])), pts_voxel_encoder=dict( feat_channels=[32, 64], point_cloud_range=[-100, -100, -5, 100, 100, 3]), pts_middle_encoder=dict(output_shape=[800, 800]), pts_neck=dict( _delete_=True, type='SECONDFPN', norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01), in_channels=[64, 128, 256], upsample_strides=[1, 2, 4], out_channels=[128, 128, 128]), pts_bbox_head=dict( _delete_=True, type='ShapeAwareHead', num_classes=9, in_channels=384, feat_channels=384, use_direction_classifier=True, anchor_generator=dict( type='AlignedAnchor3DRangeGeneratorPerCls', ranges=[[-100, -100, -1.0709302, 100, 100, -1.0709302], [-100, -100, -1.3220503, 100, 100, -1.3220503], [-100, -100, -0.9122268, 100, 100, -0.9122268], [-100, -100, -1.8012227, 100, 100, -1.8012227], [-100, -100, -1.0715024, 100, 100, -1.0715024], [-100, -100, -0.8871424, 100, 100, -0.8871424], [-100, -100, -0.3519405, 100, 100, -0.3519405], [-100, -100, -0.6276341, 100, 100, -0.6276341], [-100, -100, -0.3033737, 100, 100, -0.3033737]], sizes=[ [1.76, 0.63, 1.44], # bicycle [2.35, 0.96, 1.59], # motorcycle [0.80, 0.76, 1.76], # pedestrian [0.73, 0.35, 0.50], # animal [4.75, 1.92, 1.71], # car [6.52, 2.42, 2.34], # emergency vehicle [12.70, 2.92, 3.42], # bus [8.17, 2.75, 3.20], # other vehicle [10.24, 2.84, 3.44] # truck ], custom_values=[], rotations=[0, 1.57], reshape_out=False), tasks=[ dict( num_class=2, class_names=['bicycle', 'motorcycle'], shared_conv_channels=(64, 64), shared_conv_strides=(1, 1), norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01)), dict( num_class=2, class_names=['pedestrian', 'animal'], shared_conv_channels=(64, 64), shared_conv_strides=(1, 1), norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01)), dict( num_class=2, class_names=['car', 'emergency_vehicle'], shared_conv_channels=(64, 64, 64), shared_conv_strides=(2, 1, 1), norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01)), dict( num_class=3, class_names=['bus', 'other_vehicle', 'truck'], shared_conv_channels=(64, 64, 64), shared_conv_strides=(2, 1, 1), norm_cfg=dict(type='naiveSyncBN2d', eps=1e-3, momentum=0.01)) ], assign_per_class=True, diff_rad_by_sin=True, dir_offset=-0.7854, # -pi/4 dir_limit_offset=0, bbox_coder=dict(type='DeltaXYZWLHRBBoxCoder', code_size=7), loss_cls=dict( type='mmdet.FocalLoss', use_sigmoid=True, gamma=2.0, alpha=0.25, loss_weight=1.0), loss_bbox=dict( type='mmdet.SmoothL1Loss', beta=1.0 / 9.0, loss_weight=1.0), loss_dir=dict( type='mmdet.CrossEntropyLoss', use_sigmoid=False, loss_weight=0.2)), # model training and testing settings train_cfg=dict( _delete_=True, pts=dict( assigner=[ dict( # bicycle type='Max3DIoUAssigner', iou_calculator=dict(type='BboxOverlapsNearest3D'), pos_iou_thr=0.55, neg_iou_thr=0.4, min_pos_iou=0.4, ignore_iof_thr=-1), dict( # motorcycle type='Max3DIoUAssigner', iou_calculator=dict(type='BboxOverlapsNearest3D'), pos_iou_thr=0.55, neg_iou_thr=0.4, min_pos_iou=0.4, ignore_iof_thr=-1), dict( # pedestrian type='Max3DIoUAssigner', iou_calculator=dict(type='BboxOverlapsNearest3D'), pos_iou_thr=0.55, neg_iou_thr=0.4, min_pos_iou=0.4, ignore_iof_thr=-1), dict( # animal type='Max3DIoUAssigner', iou_calculator=dict(type='BboxOverlapsNearest3D'), pos_iou_thr=0.55, neg_iou_thr=0.4, min_pos_iou=0.4, ignore_iof_thr=-1), dict( # car type='Max3DIoUAssigner', iou_calculator=dict(type='BboxOverlapsNearest3D'), pos_iou_thr=0.6, neg_iou_thr=0.45, min_pos_iou=0.45, ignore_iof_thr=-1), dict( # emergency vehicle type='Max3DIoUAssigner', iou_calculator=dict(type='BboxOverlapsNearest3D'), pos_iou_thr=0.55, neg_iou_thr=0.4, min_pos_iou=0.4, ignore_iof_thr=-1), dict( # bus type='Max3DIoUAssigner', iou_calculator=dict(type='BboxOverlapsNearest3D'), pos_iou_thr=0.6, neg_iou_thr=0.45, min_pos_iou=0.45, ignore_iof_thr=-1), dict( # other vehicle type='Max3DIoUAssigner', iou_calculator=dict(type='BboxOverlapsNearest3D'), pos_iou_thr=0.55, neg_iou_thr=0.4, min_pos_iou=0.4, ignore_iof_thr=-1), dict( # truck type='Max3DIoUAssigner', iou_calculator=dict(type='BboxOverlapsNearest3D'), pos_iou_thr=0.6, neg_iou_thr=0.45, min_pos_iou=0.45, ignore_iof_thr=-1) ], allowed_border=0, code_weight=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], pos_weight=-1, debug=False))) # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (16 GPUs) x (2 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=32)