# dataset settings dataset_type = 'S3DISDataset' data_root = 'data/s3dis/' # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) # data_root = 's3://openmmlab/datasets/detection3d/s3dis/' # Method 2: Use backend_args, file_client_args in versions before 1.1.0 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection3d/', # 'data/': 's3://openmmlab/datasets/detection3d/' # })) backend_args = None metainfo = dict(classes=('table', 'chair', 'sofa', 'bookcase', 'board')) train_area = [1, 2, 3, 4, 6] test_area = 5 train_pipeline = [ dict( type='LoadPointsFromFile', coord_type='DEPTH', shift_height=False, use_color=True, load_dim=6, use_dim=[0, 1, 2, 3, 4, 5], backend_args=backend_args), dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), dict(type='PointSample', num_points=100000), dict( type='RandomFlip3D', sync_2d=False, flip_ratio_bev_horizontal=0.5, flip_ratio_bev_vertical=0.5), dict( type='GlobalRotScaleTrans', rot_range=[-0.087266, 0.087266], scale_ratio_range=[0.9, 1.1], translation_std=[.1, .1, .1], shift_height=False), dict(type='NormalizePointsColor', color_mean=None), dict( type='Pack3DDetInputs', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) ] test_pipeline = [ dict( type='LoadPointsFromFile', coord_type='DEPTH', shift_height=False, use_color=True, load_dim=6, use_dim=[0, 1, 2, 3, 4, 5], backend_args=backend_args), dict( type='MultiScaleFlipAug3D', img_scale=(1333, 800), pts_scale_ratio=1, flip=False, transforms=[ dict( type='GlobalRotScaleTrans', rot_range=[0, 0], scale_ratio_range=[1., 1.], translation_std=[0, 0, 0]), dict( type='RandomFlip3D', sync_2d=False, flip_ratio_bev_horizontal=0.5, flip_ratio_bev_vertical=0.5), dict(type='PointSample', num_points=100000), dict(type='NormalizePointsColor', color_mean=None), ]), dict(type='Pack3DDetInputs', keys=['points']) ] train_dataloader = dict( batch_size=8, num_workers=4, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type='RepeatDataset', times=13, dataset=dict( type='ConcatDataset', datasets=[ dict( type=dataset_type, data_root=data_root, ann_file=f's3dis_infos_Area_{i}.pkl', pipeline=train_pipeline, filter_empty_gt=True, metainfo=metainfo, box_type_3d='Depth', backend_args=backend_args) for i in train_area ]))) val_dataloader = dict( batch_size=1, num_workers=1, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file=f's3dis_infos_Area_{test_area}.pkl', pipeline=test_pipeline, metainfo=metainfo, test_mode=True, box_type_3d='Depth', backend_args=backend_args)) test_dataloader = dict( batch_size=1, num_workers=1, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file=f's3dis_infos_Area_{test_area}.pkl', pipeline=test_pipeline, metainfo=metainfo, test_mode=True, box_type_3d='Depth', backend_args=backend_args)) val_evaluator = dict(type='IndoorMetric') test_evaluator = val_evaluator vis_backends = [dict(type='LocalVisBackend')] visualizer = dict( type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer')