# dataset settings # D5 in the config name means the whole dataset is divided into 5 folds # We only use one fold for efficient experiments dataset_type = 'WaymoDataset' data_root = 'data/waymo/kitti_format/' # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) # data_root = 's3://openmmlab/datasets/detection3d/waymo/kitti_format/' # Method 2: Use backend_args, file_client_args in versions before 1.1.0 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection3d/', # 'data/': 's3://openmmlab/datasets/detection3d/' # })) backend_args = None class_names = ['Car'] metainfo = dict(classes=class_names) point_cloud_range = [-74.88, -74.88, -2, 74.88, 74.88, 4] input_modality = dict(use_lidar=True, use_camera=False) db_sampler = dict( data_root=data_root, info_path=data_root + 'waymo_dbinfos_train.pkl', rate=1.0, prepare=dict(filter_by_difficulty=[-1], filter_by_min_points=dict(Car=5)), classes=class_names, sample_groups=dict(Car=15), points_loader=dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=6, use_dim=[0, 1, 2, 3, 4], backend_args=backend_args), backend_args=backend_args) train_pipeline = [ dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=6, use_dim=5, backend_args=backend_args), dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), dict(type='ObjectSample', db_sampler=db_sampler), dict( type='RandomFlip3D', sync_2d=False, flip_ratio_bev_horizontal=0.5, flip_ratio_bev_vertical=0.5), dict( type='GlobalRotScaleTrans', rot_range=[-0.78539816, 0.78539816], scale_ratio_range=[0.95, 1.05]), dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), dict(type='PointShuffle'), dict( type='Pack3DDetInputs', keys=['points'], meta_keys=['box_type_3d', 'sample_idx', 'context_name', 'timestamp']) ] test_pipeline = [ dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=6, use_dim=5, backend_args=backend_args), dict( type='MultiScaleFlipAug3D', img_scale=(1333, 800), pts_scale_ratio=1, flip=False, transforms=[ dict( type='GlobalRotScaleTrans', rot_range=[0, 0], scale_ratio_range=[1., 1.], translation_std=[0, 0, 0]), dict(type='RandomFlip3D'), dict( type='PointsRangeFilter', point_cloud_range=point_cloud_range) ]), dict( type='Pack3DDetInputs', keys=['points'], meta_keys=['box_type_3d', 'sample_idx', 'context_name', 'timestamp']) ] # construct a pipeline for data and gt loading in show function # please keep its loading function consistent with test_pipeline (e.g. client) eval_pipeline = [ dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=6, use_dim=5, backend_args=backend_args), dict(type='Pack3DDetInputs', keys=['points']), ] train_dataloader = dict( batch_size=2, num_workers=2, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type='RepeatDataset', times=2, dataset=dict( type=dataset_type, data_root=data_root, ann_file='waymo_infos_train.pkl', data_prefix=dict( pts='training/velodyne', sweeps='training/velodyne'), pipeline=train_pipeline, modality=input_modality, test_mode=False, metainfo=metainfo, # we use box_type_3d='LiDAR' in kitti and nuscenes dataset # and box_type_3d='Depth' in sunrgbd and scannet dataset. box_type_3d='LiDAR', # load one frame every five frames load_interval=5, backend_args=backend_args))) val_dataloader = dict( batch_size=1, num_workers=1, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, data_prefix=dict(pts='training/velodyne', sweeps='training/velodyne'), ann_file='waymo_infos_val.pkl', pipeline=eval_pipeline, modality=input_modality, test_mode=True, metainfo=metainfo, box_type_3d='LiDAR', backend_args=backend_args)) test_dataloader = dict( batch_size=1, num_workers=1, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, data_prefix=dict(pts='training/velodyne', sweeps='training/velodyne'), ann_file='waymo_infos_val.pkl', pipeline=eval_pipeline, modality=input_modality, test_mode=True, metainfo=metainfo, box_type_3d='LiDAR', backend_args=backend_args)) val_evaluator = dict( type='WaymoMetric', waymo_bin_file='./data/waymo/waymo_format/gt.bin') test_evaluator = val_evaluator vis_backends = [dict(type='LocalVisBackend')] visualizer = dict( type='Det3DLocalVisualizer', vis_backends=vis_backends, name='visualizer')