_base_ = [ '../_base_/datasets/sunrgbd-3d.py', '../_base_/default_runtime.py', '../_base_/models/imvotenet.py' ] backend_args = None train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict( type='LoadAnnotations3D', with_bbox=True, with_label=True, with_bbox_3d=False, with_label_3d=False), dict( type='RandomChoiceResize', scales=[(1333, 480), (1333, 504), (1333, 528), (1333, 552), (1333, 576), (1333, 600)], keep_ratio=True), dict(type='RandomFlip', prob=0.5), dict( type='Pack3DDetInputs', keys=['img', 'gt_bboxes', 'gt_bboxes_labels']), ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(1333, 600), keep_ratio=True), dict( type='Pack3DDetInputs', keys=(['img']), meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape', 'scale_factor')) ] train_dataloader = dict( batch_size=2, num_workers=2, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type='RepeatDataset', times=1, dataset=dict(pipeline=train_pipeline))) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = dict(dataset=dict(pipeline=test_pipeline)) train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=8, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500), dict( type='MultiStepLR', begin=0, end=8, by_epoch=True, milestones=[6], gamma=0.1) ] val_evaluator = dict(type='Indoor2DMetric') test_evaluator = val_evaluator # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)) load_from = 'http://download.openmmlab.com/mmdetection/v2.0/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco_bbox_mAP-0.408__segm_mAP-0.37_20200504_163245-42aa3d00.pth' # noqa