_base_ = [ '../_base_/schedules/mmdet-schedule-1x.py', '../_base_/default_runtime.py' ] prior_generator = dict( type='AlignedAnchor3DRangeGenerator', ranges=[[-3.2, -0.2, -2.28, 3.2, 6.2, 0.28]], rotations=[.0]) model = dict( type='ImVoxelNet', data_preprocessor=dict( type='Det3DDataPreprocessor', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], bgr_to_rgb=True, pad_size_divisor=32), backbone=dict( type='mmdet.ResNet', depth=50, num_stages=4, out_indices=(0, 1, 2, 3), frozen_stages=1, norm_cfg=dict(type='BN', requires_grad=False), norm_eval=True, init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50'), style='pytorch'), neck=dict( type='mmdet.FPN', in_channels=[256, 512, 1024, 2048], out_channels=256, num_outs=4), neck_3d=dict( type='IndoorImVoxelNeck', in_channels=256, out_channels=128, n_blocks=[1, 1, 1]), bbox_head=dict( type='ImVoxelHead', n_classes=10, n_levels=3, n_channels=128, n_reg_outs=7, pts_assign_threshold=27, pts_center_threshold=18, prior_generator=prior_generator), prior_generator=prior_generator, n_voxels=[40, 40, 16], coord_type='DEPTH', train_cfg=dict(), test_cfg=dict(nms_pre=1000, iou_thr=.25, score_thr=.01)) dataset_type = 'SUNRGBDDataset' data_root = 'data/sunrgbd/' class_names = [ 'bed', 'table', 'sofa', 'chair', 'toilet', 'desk', 'dresser', 'night_stand', 'bookshelf', 'bathtub' ] metainfo = dict(CLASSES=class_names) backend_args = None train_pipeline = [ dict(type='LoadAnnotations3D', backend_args=backend_args), dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='RandomResize', scale=[(512, 384), (768, 576)], keep_ratio=True), dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), dict(type='Pack3DDetInputs', keys=['img', 'gt_bboxes_3d', 'gt_labels_3d']) ] test_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict(type='Resize', scale=(640, 480), keep_ratio=True), dict(type='Pack3DDetInputs', keys=['img']) ] train_dataloader = dict( batch_size=4, num_workers=4, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type='RepeatDataset', times=2, dataset=dict( type=dataset_type, data_root=data_root, ann_file='sunrgbd_infos_train.pkl', pipeline=train_pipeline, test_mode=False, filter_empty_gt=True, box_type_3d='Depth', metainfo=metainfo, backend_args=backend_args))) val_dataloader = dict( batch_size=1, num_workers=1, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, ann_file='sunrgbd_infos_val.pkl', pipeline=test_pipeline, test_mode=True, box_type_3d='Depth', metainfo=metainfo, backend_args=backend_args)) test_dataloader = val_dataloader val_evaluator = dict( type='IndoorMetric', ann_file=data_root + 'sunrgbd_infos_val.pkl', metric='bbox') test_evaluator = val_evaluator # optimizer optim_wrapper = dict( type='OptimWrapper', optimizer=dict( _delete_=True, type='AdamW', lr=0.0001, weight_decay=0.0001), paramwise_cfg=dict( custom_keys={'backbone': dict(lr_mult=0.1, decay_mult=1.0)}), clip_grad=dict(max_norm=35., norm_type=2)) param_scheduler = [ dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[8, 11], gamma=0.1) ] # hooks default_hooks = dict(checkpoint=dict(type='CheckpointHook', max_keep_ckpts=1)) # runtime find_unused_parameters = True # only 1 of 4 FPN outputs is used