# dataset settings # D3 in the config name means the whole dataset is divided into 3 folds # We only use one fold for efficient experiments dataset_type = 'WaymoDataset' data_root = 'data/waymo/kitti_format/' class_names = ['Car', 'Pedestrian', 'Cyclist'] input_modality = dict(use_lidar=False, use_camera=True) # Example to use different file client # Method 1: simply set the data root and let the file I/O module # automatically infer from prefix (not support LMDB and Memcache yet) # data_root = 's3://openmmlab/datasets/detection3d/waymo/kitti_format/' # Method 2: Use backend_args, file_client_args in versions before 1.1.0 # backend_args = dict( # backend='petrel', # path_mapping=dict({ # './data/': 's3://openmmlab/datasets/detection3d/', # 'data/': 's3://openmmlab/datasets/detection3d/' # })) backend_args = None train_pipeline = [ dict(type='LoadImageFromFileMono3D', backend_args=backend_args), dict( type='LoadAnnotations3D', with_bbox=True, with_label=True, with_attr_label=False, with_bbox_3d=True, with_label_3d=True, with_bbox_depth=True), # base shape (1248, 832), scale (0.95, 1.05) dict( type='RandomResize3D', scale=(1284, 832), ratio_range=(0.95, 1.05), keep_ratio=True, ), dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), dict( type='Pack3DDetInputs', keys=[ 'img', 'gt_bboxes', 'gt_bboxes_labels', 'gt_bboxes_3d', 'gt_labels_3d', 'centers_2d', 'depths' ]), ] test_pipeline = [ dict(type='LoadImageFromFileMono3D', backend_args=backend_args), dict( type='RandomResize3D', scale=(1248, 832), ratio_range=(1., 1.), keep_ratio=True), dict(type='Pack3DDetInputs', keys=['img']), ] # construct a pipeline for data and gt loading in show function # please keep its loading function consistent with test_pipeline (e.g. client) eval_pipeline = [ dict(type='LoadImageFromFileMono3D', backend_args=backend_args), dict( type='RandomResize3D', scale=(1248, 832), ratio_range=(1., 1.), keep_ratio=True), dict(type='Pack3DDetInputs', keys=['img']), ] metainfo = dict(CLASSES=class_names) train_dataloader = dict( batch_size=3, num_workers=3, persistent_workers=True, sampler=dict(type='DefaultSampler', shuffle=True), dataset=dict( type=dataset_type, data_root=data_root, ann_file='waymo_infos_train.pkl', data_prefix=dict( pts='training/velodyne', CAM_FRONT='training/image_0', CAM_FRONT_LEFT='training/image_1', CAM_FRONT_RIGHT='training/image_2', CAM_SIDE_LEFT='training/image_3', CAM_SIDE_RIGHT='training/image_4'), pipeline=train_pipeline, modality=input_modality, test_mode=False, metainfo=metainfo, # we use box_type_3d='LiDAR' in kitti and nuscenes dataset # and box_type_3d='Depth' in sunrgbd and scannet dataset. box_type_3d='Camera', load_type='fov_image_based', # load one frame every three frames load_interval=5, backend_args=backend_args)) val_dataloader = dict( batch_size=1, num_workers=1, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, data_prefix=dict( pts='training/velodyne', CAM_FRONT='training/image_0', CAM_FRONT_LEFT='training/image_1', CAM_FRONT_RIGHT='training/image_2', CAM_SIDE_LEFT='training/image_3', CAM_SIDE_RIGHT='training/image_4'), ann_file='waymo_infos_val.pkl', pipeline=eval_pipeline, modality=input_modality, test_mode=True, metainfo=metainfo, # we use box_type_3d='LiDAR' in kitti and nuscenes dataset # and box_type_3d='Depth' in sunrgbd and scannet dataset. box_type_3d='Camera', load_type='fov_image_based', backend_args=backend_args)) test_dataloader = dict( batch_size=1, num_workers=1, persistent_workers=True, drop_last=False, sampler=dict(type='DefaultSampler', shuffle=False), dataset=dict( type=dataset_type, data_root=data_root, data_prefix=dict( pts='training/velodyne', CAM_FRONT='training/image_0', CAM_FRONT_LEFT='training/image_1', CAM_FRONT_RIGHT='training/image_2', CAM_SIDE_LEFT='training/image_3', CAM_SIDE_RIGHT='training/image_4'), ann_file='waymo_infos_val.pkl', pipeline=eval_pipeline, modality=input_modality, test_mode=True, metainfo=metainfo, # we use box_type_3d='LiDAR' in kitti and nuscenes dataset # and box_type_3d='Depth' in sunrgbd and scannet dataset. box_type_3d='Camera', load_type='fov_image_based', backend_args=backend_args)) val_evaluator = dict( type='WaymoMetric', ann_file='./data/waymo/kitti_format/waymo_infos_val.pkl', waymo_bin_file='./data/waymo/waymo_format/fov_gt.bin', data_root='./data/waymo/waymo_format', metric='LET_mAP', load_type='fov_image_based', backend_args=backend_args) test_evaluator = val_evaluator