model = dict( type='MinkUNet', data_preprocessor=dict( type='Det3DDataPreprocessor', voxel=True, voxel_type='minkunet', batch_first=False, max_voxels=80000, voxel_layer=dict( max_num_points=-1, point_cloud_range=[-100, -100, -20, 100, 100, 20], voxel_size=[0.05, 0.05, 0.05], max_voxels=(-1, -1))), backbone=dict( type='MinkUNetBackbone', in_channels=4, num_stages=4, base_channels=32, encoder_channels=[32, 64, 128, 256], encoder_blocks=[2, 2, 2, 2], decoder_channels=[256, 128, 96, 96], decoder_blocks=[2, 2, 2, 2], block_type='basic', sparseconv_backend='torchsparse'), decode_head=dict( type='MinkUNetHead', channels=96, num_classes=19, dropout_ratio=0, loss_decode=dict(type='mmdet.CrossEntropyLoss', avg_non_ignore=True), ignore_index=19), train_cfg=dict(), test_cfg=dict())