_base_ = [ '../_base_/datasets/semantickitti.py', '../_base_/models/cylinder3d.py', '../_base_/default_runtime.py' ] # optimizer lr = 0.001 optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='AdamW', lr=lr, weight_decay=0.01)) train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=36, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') # learning rate param_scheduler = [ dict( type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=1000), dict( type='MultiStepLR', begin=0, end=36, by_epoch=True, milestones=[30], gamma=0.1) ] train_dataloader = dict(batch_size=4, ) # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (8 GPUs) x (4 samples per GPU). # auto_scale_lr = dict(enable=False, base_batch_size=32) default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=5))