_base_ = [ '../_base_/datasets/semantickitti.py', '../_base_/models/cylinder3d.py', '../_base_/schedules/schedule-3x.py', '../_base_/default_runtime.py' ] train_pipeline = [ dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), dict( type='LoadAnnotations3D', with_bbox_3d=False, with_label_3d=False, with_seg_3d=True, seg_3d_dtype='np.int32', seg_offset=2**16, dataset_type='semantickitti'), dict(type='PointSegClassMapping'), dict( type='RandomChoice', transforms=[ [ dict( type='LaserMix', num_areas=[3, 4, 5, 6], pitch_angles=[-25, 3], pre_transform=[ dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), dict( type='LoadAnnotations3D', with_bbox_3d=False, with_label_3d=False, with_seg_3d=True, seg_3d_dtype='np.int32', seg_offset=2**16, dataset_type='semantickitti'), dict(type='PointSegClassMapping') ], prob=1) ], [ dict( type='PolarMix', instance_classes=[0, 1, 2, 3, 4, 5, 6, 7], swap_ratio=0.5, rotate_paste_ratio=1.0, pre_transform=[ dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), dict( type='LoadAnnotations3D', with_bbox_3d=False, with_label_3d=False, with_seg_3d=True, seg_3d_dtype='np.int32', seg_offset=2**16, dataset_type='semantickitti'), dict(type='PointSegClassMapping') ], prob=1) ], ], prob=[0.5, 0.5]), dict( type='GlobalRotScaleTrans', rot_range=[0., 6.28318531], scale_ratio_range=[0.95, 1.05], translation_std=[0, 0, 0], ), dict(type='Pack3DDetInputs', keys=['points', 'pts_semantic_mask']) ] train_dataloader = dict(dataset=dict(pipeline=train_pipeline)) default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=1))