# FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection > [FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection](https://arxiv.org/abs/2112.00322) ## Abstract Recently, promising applications in robotics and augmented reality have attracted considerable attention to 3D object detection from point clouds. In this paper, we present FCAF3D --- a first-in-class fully convolutional anchor-free indoor 3D object detection method. It is a simple yet effective method that uses a voxel representation of a point cloud and processes voxels with sparse convolutions. FCAF3D can handle large-scale scenes with minimal runtime through a single fully convolutional feed-forward pass. Existing 3D object detection methods make prior assumptions on the geometry of objects, and we argue that it limits their generalization ability. To eliminate prior assumptions, we propose a novel parametrization of oriented bounding boxes that allows obtaining better results in a purely data-driven way. The proposed method achieves state-of-the-art 3D object detection results in terms of mAP@0.5 on ScanNet V2 (+4.5), SUN RGB-D (+3.5), and S3DIS (+20.5) datasets.
## Introduction We implement FCAF3D and provide the result and checkpoints on the ScanNet and SUN RGB-D dataset. ## Results and models ### ScanNet | Backbone | Mem (GB) | Inf time (fps) | AP@0.25 | AP@0.5 | Download | | :------------------------------------------------: | :------: | :------------: | :----------: | :----------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | [MinkResNet34](./fcaf3d_8x2_scannet-3d-18class.py) | 10.5 | 15.7 | 69.7(70.7\*) | 55.2(56.0\*) | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/fcaf3d/fcaf3d_8x2_scannet-3d-18class/fcaf3d_8x2_scannet-3d-18class_20220805_084956.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/fcaf3d/fcaf3d_8x2_scannet-3d-18class/fcaf3d_8x2_scannet-3d-18class_20220805_084956.log.json) | ### SUN RGB-D | Backbone | Mem (GB) | Inf time (fps) | AP@0.25 | AP@0.5 | Download | | :------------------------------------------------: | :------: | :------------: | :----------: | :----------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | [MinkResNet34](./fcaf3d_8x2_sunrgbd-3d-10class.py) | 6.3 | 17.9 | 63.8(63.8\*) | 47.3(48.2\*) | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/fcaf3d/fcaf3d_8x2_sunrgbd-3d-10class/fcaf3d_8x2_sunrgbd-3d-10class_20220805_165017.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/fcaf3d/fcaf3d_8x2_sunrgbd-3d-10class/fcaf3d_8x2_sunrgbd-3d-10class_20220805_165017.log.json) | ### S3DIS | Backbone | Mem (GB) | Inf time (fps) | AP@0.25 | AP@0.5 | Download | | :----------------------------------------------: | :------: | :------------: | :----------: | :----------: | :-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------: | | [MinkResNet34](./fcaf3d_2xb8_s3dis-3d-5class.py) | 23.5 | 10.9 | 67.4(64.9\*) | 45.7(43.8\*) | [model](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/fcaf3d/fcaf3d_8x2_s3dis-3d-5class/fcaf3d_8x2_s3dis-3d-5class_20220805_121957.pth) \| [log](https://download.openmmlab.com/mmdetection3d/v1.0.0_models/fcaf3d/fcaf3d_8x2_s3dis-3d-5class/fcaf3d_8x2_s3dis-3d-5class_20220805_121957.log.json) | **Note** - We report the results across 5 train runs followed by 5 test runs. * means the results reported in the paper. - Inference time is given for a single NVidia RTX 4090 GPU. All models are trained on 2 GPUs. ## Citation ```latex @inproceedings{rukhovich2022fcaf3d, title={FCAF3D: Fully Convolutional Anchor-Free 3D Object Detection}, author={Danila Rukhovich, Anna Vorontsova, Anton Konushin}, booktitle={European conference on computer vision}, year={2022} } ```