_base_ = [ '../_base_/models/fcaf3d.py', '../_base_/default_runtime.py', '../_base_/datasets/scannet-3d.py' ] n_points = 100000 backend_args = None train_pipeline = [ dict( type='LoadPointsFromFile', coord_type='DEPTH', shift_height=False, use_color=True, load_dim=6, use_dim=[0, 1, 2, 3, 4, 5], backend_args=backend_args), dict(type='LoadAnnotations3D'), dict(type='GlobalAlignment', rotation_axis=2), dict(type='PointSample', num_points=n_points), dict( type='RandomFlip3D', sync_2d=False, flip_ratio_bev_horizontal=0.5, flip_ratio_bev_vertical=0.5), dict( type='GlobalRotScaleTrans', rot_range=[-0.087266, 0.087266], scale_ratio_range=[.9, 1.1], translation_std=[.1, .1, .1], shift_height=False), dict(type='NormalizePointsColor', color_mean=None), dict( type='Pack3DDetInputs', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) ] test_pipeline = [ dict( type='LoadPointsFromFile', coord_type='DEPTH', shift_height=False, use_color=True, load_dim=6, use_dim=[0, 1, 2, 3, 4, 5], backend_args=backend_args), dict(type='GlobalAlignment', rotation_axis=2), dict( type='MultiScaleFlipAug3D', img_scale=(1333, 800), pts_scale_ratio=1, flip=False, transforms=[ dict( type='GlobalRotScaleTrans', rot_range=[0, 0], scale_ratio_range=[1., 1.], translation_std=[0, 0, 0]), dict( type='RandomFlip3D', sync_2d=False, flip_ratio_bev_horizontal=0.5, flip_ratio_bev_vertical=0.5), dict(type='PointSample', num_points=n_points), dict(type='NormalizePointsColor', color_mean=None), ]), dict(type='Pack3DDetInputs', keys=['points']) ] train_dataloader = dict( dataset=dict( type='RepeatDataset', times=10, dataset=dict(pipeline=train_pipeline, filter_empty_gt=True))) val_dataloader = dict(dataset=dict(pipeline=test_pipeline)) test_dataloader = val_dataloader optim_wrapper = dict( type='OptimWrapper', optimizer=dict(type='AdamW', lr=0.001, weight_decay=0.0001), clip_grad=dict(max_norm=10, norm_type=2)) # learning rate param_scheduler = dict( type='MultiStepLR', begin=0, end=12, by_epoch=True, milestones=[8, 11], gamma=0.1) custom_hooks = [dict(type='EmptyCacheHook', after_iter=True)] # training schedule for 1x train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=12) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop')