_base_ = ['./multiview-dfm_r101-dcn_16xb2_waymoD5-3d-3class.py'] model = dict( bbox_head=dict( _delete_=True, type='CenterHead', in_channels=256, tasks=[ dict(num_class=1, class_names=['Pedestrian']), dict(num_class=1, class_names=['Cyclist']), dict(num_class=1, class_names=['Car']), ], common_heads=dict(reg=(2, 2), height=(1, 2), dim=(3, 2), rot=(2, 2)), share_conv_channel=64, bbox_coder=dict( type='CenterPointBBoxCoder', post_center_range=[-35.0, -75.0, -2, 75.0, 75.0, 4], pc_range=[-35.0, -75.0, -2, 75.0, 75.0, 4], max_num=2000, score_threshold=0, out_size_factor=1, voxel_size=(.50, .50), code_size=7), separate_head=dict( type='SeparateHead', init_bias=-2.19, final_kernel=3), loss_cls=dict(type='mmdet.GaussianFocalLoss', reduction='mean'), loss_bbox=dict( type='mmdet.L1Loss', reduction='mean', loss_weight=0.25), norm_bbox=True), train_cfg=dict( _delete_=True, grid_size=[220, 300, 1], voxel_size=(0.5, 0.5, 6), out_size_factor=1, dense_reg=1, gaussian_overlap=0.1, max_objs=500, min_radius=2, code_weights=[1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], point_cloud_range=[-35.0, -75.0, -2, 75.0, 75.0, 4]), test_cfg=dict( _delete_=True, post_center_limit_range=[-35.0, -75.0, -2, 75.0, 75.0, 4], max_per_img=4096, max_pool_nms=False, min_radius=[0.5, 2, 6], score_threshold=0, out_size_factor=1, voxel_size=(0.5, 0.5), nms_type='circle', pre_max_size=2000, post_max_size=200, nms_thr=0.2))