_base_ = './htc_r50_fpn_head-without-semantic_1x_nuim.py' model = dict( roi_head=dict( semantic_roi_extractor=dict( type='SingleRoIExtractor', roi_layer=dict(type='RoIAlign', output_size=14, sampling_ratio=0), out_channels=256, featmap_strides=[8]), semantic_head=dict( type='FusedSemanticHead', num_ins=5, fusion_level=1, num_convs=4, in_channels=256, conv_out_channels=256, num_classes=32, ignore_label=0, loss_weight=0.2))) data_root = 'data/nuimages/' backend_args = None train_pipeline = [ dict(type='LoadImageFromFile', backend_args=backend_args), dict( type='LoadAnnotations', with_bbox=True, with_mask=True, with_seg=True), dict( type='Resize', img_scale=[(1280, 720), (1920, 1080)], multiscale_mode='range', keep_ratio=True), dict(type='RandomFlip', flip_ratio=0.5), dict(type='SegRescale', scale_factor=1 / 8), dict(type='PackDetInputs') ] data = dict( train=dict( seg_prefix=data_root + 'annotations/semantic_masks/', pipeline=train_pipeline))