_base_ = './parta2_hv_secfpn_8xb2-cyclic-80e_kitti-3d-3class.py' point_cloud_range = [0, -40, -3, 70.4, 40, 1] # velodyne coordinates, x, y, z model = dict( rpn_head=dict( type='PartA2RPNHead', num_classes=1, anchor_generator=dict( _delete_=True, type='Anchor3DRangeGenerator', ranges=[[0, -40.0, -1.78, 70.4, 40.0, -1.78]], sizes=[[3.9, 1.6, 1.56]], rotations=[0, 1.57], reshape_out=False)), roi_head=dict( num_classes=1, semantic_head=dict(num_classes=1), bbox_head=dict(num_classes=1)), # model training and testing settings train_cfg=dict( _delete_=True, rpn=dict( assigner=dict( type='Max3DIoUAssigner', iou_calculator=dict(type='BboxOverlapsNearest3D'), pos_iou_thr=0.6, neg_iou_thr=0.45, min_pos_iou=0.45, ignore_iof_thr=-1), allowed_border=0, pos_weight=-1, debug=False), rpn_proposal=dict( nms_pre=9000, nms_post=512, max_num=512, nms_thr=0.8, score_thr=0, use_rotate_nms=False), rcnn=dict( assigner=dict( # for Car type='Max3DIoUAssigner', iou_calculator=dict(type='BboxOverlaps3D', coordinate='lidar'), pos_iou_thr=0.55, neg_iou_thr=0.55, min_pos_iou=0.55, ignore_iof_thr=-1), sampler=dict( type='IoUNegPiecewiseSampler', num=128, pos_fraction=0.55, neg_piece_fractions=[0.8, 0.2], neg_iou_piece_thrs=[0.55, 0.1], neg_pos_ub=-1, add_gt_as_proposals=False, return_iou=True), cls_pos_thr=0.75, cls_neg_thr=0.25)), test_cfg=dict( rpn=dict( nms_pre=1024, nms_post=100, max_num=100, nms_thr=0.7, score_thr=0, use_rotate_nms=True), rcnn=dict( use_rotate_nms=True, use_raw_score=True, nms_thr=0.01, score_thr=0.1))) # dataset settings dataset_type = 'KittiDataset' data_root = 'data/kitti/' class_names = ['Car'] input_modality = dict(use_lidar=True, use_camera=False) backend_args = None db_sampler = dict( data_root=data_root, info_path=data_root + 'kitti_dbinfos_train.pkl', rate=1.0, prepare=dict(filter_by_difficulty=[-1], filter_by_min_points=dict(Car=5)), classes=class_names, sample_groups=dict(Car=15), points_loader=dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4, backend_args=backend_args), backend_args=backend_args) train_pipeline = [ dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4, backend_args=backend_args), dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), dict(type='ObjectSample', db_sampler=db_sampler), dict( type='ObjectNoise', num_try=100, translation_std=[1.0, 1.0, 0.5], global_rot_range=[0.0, 0.0], rot_range=[-0.78539816, 0.78539816]), dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), dict( type='GlobalRotScaleTrans', rot_range=[-0.78539816, 0.78539816], scale_ratio_range=[0.95, 1.05]), dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectNameFilter', classes=class_names), dict(type='PointShuffle'), dict( type='Pack3DDetInputs', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) ] test_pipeline = [ dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4, backend_args=backend_args), dict( type='MultiScaleFlipAug3D', img_scale=(1333, 800), pts_scale_ratio=1, flip=False, transforms=[ dict( type='GlobalRotScaleTrans', rot_range=[0, 0], scale_ratio_range=[1., 1.], translation_std=[0, 0, 0]), dict(type='RandomFlip3D'), dict( type='PointsRangeFilter', point_cloud_range=point_cloud_range), ]), dict(type='Pack3DDetInputs', keys=['points']) ] train_dataloader = dict( dataset=dict( dataset=dict( pipeline=train_pipeline, metainfo=dict(classes=class_names)))) test_dataloader = dict( dataset=dict(pipeline=test_pipeline, metainfo=dict(classes=class_names))) val_dataloader = dict(dataset=dict(metainfo=dict(classes=class_names))) find_unused_parameters = True