_base_ = [ '../_base_/datasets/kitti-3d-car.py', '../_base_/models/point_rcnn.py', '../_base_/default_runtime.py', '../_base_/schedules/cyclic-40e.py' ] # dataset settings dataset_type = 'KittiDataset' data_root = 'data/kitti/' class_names = ['Pedestrian', 'Cyclist', 'Car'] metainfo = dict(classes=class_names) point_cloud_range = [0, -40, -3, 70.4, 40, 1] input_modality = dict(use_lidar=True, use_camera=False) backend_args = None db_sampler = dict( data_root=data_root, info_path=data_root + 'kitti_dbinfos_train.pkl', rate=1.0, prepare=dict( filter_by_difficulty=[-1], filter_by_min_points=dict(Car=5, Pedestrian=5, Cyclist=5)), sample_groups=dict(Car=20, Pedestrian=15, Cyclist=15), classes=class_names, points_loader=dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4, backend_args=backend_args), backend_args=backend_args) train_pipeline = [ dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4, backend_args=backend_args), dict(type='LoadAnnotations3D', with_bbox_3d=True, with_label_3d=True), dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectRangeFilter', point_cloud_range=point_cloud_range), dict(type='ObjectSample', db_sampler=db_sampler), dict(type='RandomFlip3D', flip_ratio_bev_horizontal=0.5), dict( type='ObjectNoise', num_try=100, translation_std=[1.0, 1.0, 0.5], global_rot_range=[0.0, 0.0], rot_range=[-0.78539816, 0.78539816]), dict( type='GlobalRotScaleTrans', rot_range=[-0.78539816, 0.78539816], scale_ratio_range=[0.95, 1.05]), dict(type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict(type='PointSample', num_points=16384, sample_range=40.0), dict(type='PointShuffle'), dict( type='Pack3DDetInputs', keys=['points', 'gt_bboxes_3d', 'gt_labels_3d']) ] test_pipeline = [ dict( type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4, backend_args=backend_args), dict( type='MultiScaleFlipAug3D', img_scale=(1333, 800), pts_scale_ratio=1, flip=False, transforms=[ dict( type='GlobalRotScaleTrans', rot_range=[0, 0], scale_ratio_range=[1., 1.], translation_std=[0, 0, 0]), dict(type='RandomFlip3D'), dict( type='PointsRangeFilter', point_cloud_range=point_cloud_range), dict(type='PointSample', num_points=16384, sample_range=40.0) ]), dict(type='Pack3DDetInputs', keys=['points']) ] train_dataloader = dict( batch_size=2, num_workers=2, dataset=dict( type='RepeatDataset', times=2, dataset=dict(pipeline=train_pipeline, metainfo=metainfo))) test_dataloader = dict(dataset=dict(pipeline=test_pipeline, metainfo=metainfo)) val_dataloader = dict(dataset=dict(pipeline=test_pipeline, metainfo=metainfo)) lr = 0.001 # max learning rate optim_wrapper = dict(optimizer=dict(lr=lr, betas=(0.95, 0.85))) train_cfg = dict(by_epoch=True, max_epochs=80, val_interval=2) # Default setting for scaling LR automatically # - `enable` means enable scaling LR automatically # or not by default. # - `base_batch_size` = (8 GPUs) x (2 samples per GPU). auto_scale_lr = dict(enable=False, base_batch_size=16) param_scheduler = [ # learning rate scheduler # During the first 35 epochs, learning rate increases from 0 to lr * 10 # during the next 45 epochs, learning rate decreases from lr * 10 to # lr * 1e-4 dict( type='CosineAnnealingLR', T_max=35, eta_min=lr * 10, begin=0, end=35, by_epoch=True, convert_to_iter_based=True), dict( type='CosineAnnealingLR', T_max=45, eta_min=lr * 1e-4, begin=35, end=80, by_epoch=True, convert_to_iter_based=True), # momentum scheduler # During the first 35 epochs, momentum increases from 0 to 0.85 / 0.95 # during the next 45 epochs, momentum increases from 0.85 / 0.95 to 1 dict( type='CosineAnnealingMomentum', T_max=35, eta_min=0.85 / 0.95, begin=0, end=35, by_epoch=True, convert_to_iter_based=True), dict( type='CosineAnnealingMomentum', T_max=45, eta_min=1, begin=35, end=80, by_epoch=True, convert_to_iter_based=True) ]