_base_ = [ '../_base_/datasets/semantickitti.py', '../_base_/models/spvcnn.py', '../_base_/default_runtime.py' ] train_pipeline = [ dict(type='LoadPointsFromFile', coord_type='LIDAR', load_dim=4, use_dim=4), dict( type='LoadAnnotations3D', with_bbox_3d=False, with_label_3d=False, with_seg_3d=True, seg_3d_dtype='np.int32', seg_offset=2**16, dataset_type='semantickitti'), dict(type='PointSegClassMapping'), dict( type='GlobalRotScaleTrans', rot_range=[0., 6.28318531], scale_ratio_range=[0.95, 1.05], translation_std=[0, 0, 0], ), dict(type='Pack3DDetInputs', keys=['points', 'pts_semantic_mask']) ] train_dataloader = dict( sampler=dict(seed=0), dataset=dict(pipeline=train_pipeline)) lr = 0.24 optim_wrapper = dict( type='AmpOptimWrapper', loss_scale='dynamic', optimizer=dict( type='SGD', lr=lr, weight_decay=0.0001, momentum=0.9, nesterov=True)) param_scheduler = [ dict( type='LinearLR', start_factor=0.008, by_epoch=False, begin=0, end=125), dict( type='CosineAnnealingLR', begin=0, T_max=15, by_epoch=True, eta_min=1e-5, convert_to_iter_based=True) ] train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=15, val_interval=1) val_cfg = dict(type='ValLoop') test_cfg = dict(type='TestLoop') default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=1)) randomness = dict(seed=0, deterministic=False, diff_rank_seed=True) env_cfg = dict(cudnn_benchmark=True)